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Bi-infinite walks

Consider a directed graph G .
A G -colouring of Z is a (bi-infinite) walk on G .

∗

a

b

c

d

. . . ∗ c d ∗ b ∗ . . .

We call XG the set of all the possible G -colourings of Z.
Many properties of XG can be decided by looking at the graph.
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Hom shift

More generally, given a non-directed graph G , the Hom shift XG in
dimension d is the set of colourings of Zd :

with the alphabet V (G ) the vertices of G
where the colours of adjacent cells in Zd are adjacent vertices in G

Formally: XG is the set of graph morphisms from Zd to G ([Cha17]).
In the rest of the talk, d = 2.
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Fundamental Group

Useful object from topology: the fundamental group of a space

Idea: trace paths in the space, and see how we can continuously deform
them.
The fundamental group π1(X ) is a topological invariant.
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Fix some x0 ∈ X .
We consider a particular set of paths, the loops based on x0.
Two ideas:

A natural operation, the loop concatenation
Only consider loops up to homotopy (= deformation)

π1(X , x0) is the group of loops, concatenation being the group operation.

Léo Paviet Salomon The Projective Fundamental Group of Hom shifts 4 / 27



Fix some x0 ∈ X .
We consider a particular set of paths, the loops based on x0.
Two ideas:

A natural operation, the loop concatenation

Only consider loops up to homotopy (= deformation)
π1(X , x0) is the group of loops, concatenation being the group operation.

Léo Paviet Salomon The Projective Fundamental Group of Hom shifts 4 / 27



Fix some x0 ∈ X .
We consider a particular set of paths, the loops based on x0.
Two ideas:

A natural operation, the loop concatenation
Only consider loops up to homotopy (= deformation)

π1(X , x0) is the group of loops, concatenation being the group operation.

Léo Paviet Salomon The Projective Fundamental Group of Hom shifts 4 / 27



Fix some x0 ∈ X .
We consider a particular set of paths, the loops based on x0.
Two ideas:

A natural operation, the loop concatenation
Only consider loops up to homotopy (= deformation)

π1(X , x0) is the group of loops, concatenation being the group operation.

Léo Paviet Salomon The Projective Fundamental Group of Hom shifts 4 / 27



Some examples

Sphere:

π1 = {e}, the trivial
group.

Circle:

π1 = Z

Torus:

π1 = Z2

Here, the fundamental group does not depend on the chosen basepoint
x0: those spaces are (path-)connected.
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Fundamental group of a graph

A graph can also be seen as a topological space !

∗

a

b

c

d

A graph G

Topologically equivalent space
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Fundamental group and spanning trees

How to compute the fundamental group of this “topological graph” ?

Fix a spanning tree: n− 1 edges
Count edges not in this tree:
k = m − (n − 1) edges
Fundamental group is Fk

Intuitively: those edges are the
“cycle edges”; each one corresponds
to an non-contractible loop

∗

a

b

c

d

Graph G with m
edges and n
vertices

Fundamental
group: F2
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And for Hom shifts ?

Possible to adapt the ideas to Hom shifts ?

Problem: a Hom shift X ⊆ ΣZ2
is a totally disconnected space.

Idea: define "local" fundamental groups, and take the limit.
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Loops in G and in XG

∗

a

b

c

d

∗

To a loop in the graph G , we can associate a sequence of (here 1× 1)
patterns of XG + a closed loop in Z2.
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Paths

For a given “aperture window” B ⊂ Z2, a path will be:
a trajectory path in Z2 (sequence of adjacent points)

and a sequence of patterns of support B
Additional condition: consecutive patterns must “overlap”
This condition only applies to consecutive patterns.
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A path is not required to stay in the same configuration:
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Intuitively, we can move inside a given configuration, or we can "jump"
into another one.

This gives us a notion of path. What about deformations ?
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Any part of a path that can be traced inside a single configuration can be
replaced with another trajectory inside this configuration.

This path ... can be deformed into this one
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Homotopic paths: paths that be deformed into one another with a finite
sequence of such elementary deformations.

We can therefore define for each window B ∈ Z2 a fundamental group.
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What about the projective part ?

This gives us one "fundamental group" per aperture window.

Definition (Projective path)

Let x , y ∈ X . A projective path between x and y is a set of paths (pn),
with pn having aperture window Bn = {−n, . . . , n}2, such that for all n:

pn is a path between the central patterns of support Bn of x and y

pn+1 restricted to its central Bn window can be deformed in pn

x y

Bn Bn
pn

Bn+1 Bn+1

pn+1

restr(pn+1)

deformation-equivalent to
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Trees

Theorem
Let T a – possibly infinite – tree. The projective fundamental group of
XT is trivial.

Technical remarks:

T is bipartite: the theorem is in fact about its two projective path-components.

the definition of the projective fundamental group does not actually require X to be a
subshift, so T being infinite is OK.
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Sketch of the proof: flip the deepest vertices
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Sketch of the proof: deform in the chessboard configuration

Let p a projective loop , and consider its nth projection pn. Assume that:

pn’s trajectory is on (mZ)2, with m >> n

Each “segment” of the trajectory is coherent (belongs to the same
configuration)
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a
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a
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a
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a

b

d c

dfc

d c

dc

(0, 0) (m, 0)Extend the bottom side as before: go “up” in the tree

We either reduced the maximal “depth” reached in pn or the number of
times it is reached: repeat to get a contractible path in the chessboard.
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Universal covering

An important idea in topology adapted here: universal coverings

Definition (Universal Covering)

The universal covering of a graph G is the smallest tree UG that admits a
surjective morphism UG → G

Intuitively, we “unroll” each cycle in an infinite branch of the tree.

a

b c

Graph G = C3

a0 b1 c2 a3 b4 c5. . . . . .

Universal cover of G

In the following, φ : UG → G is one such surjective morphism.
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Covering shift

Notation: For a graph G , we write X̂G = XUG

Note that if G a cycle, UG is infinite: X̂G is not actually a subshift (it is
not compact, for example).
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Lift

The covering φ : UG → G induces a covering φ̂ : X̂G → XG (apply φ
pointwise).

In some cases (more on that below), this map admits a section: each
x ∈ XG can be lifted to some x̂ ∈ X̂G

a a

a

a

b

b

b

b

c

c

c

c

Point of XC3

→ a0 a3

a3

a3

b1

b1

b4

b4

c2

c2

c2

c5

Point of X̂C3
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x ∈ XG can be lifted to some x̂ ∈ X̂G

a a

a

a

b

b

b

b

c

c

c

c

Point of XC3

→ a0 a3

a3

a3

b1

b1

b4

b4

c2

c2

c2

c5

Point of X̂C3
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No squares

The “good condition” mentionned above: G contains no squares (cycles
of length 4).

a b

cd

. . . d0 a1 b2 c3 d4 a5 . . .

a b

cd

a1 b2
c3d?

Does not lift
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The square-free case

This gives us the following theorem:

Theorem (Square-free)

Let G a non-bipartite, loop-free, square-free graph, with m edges and n
vertices. Then, πproj

1 (G ) = Fm−n+1, the free-group on m − n + 1
generators.
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Proof

Understand the link between
the graph G and its universal covering UG

the induced Hom shifts XG and X̂G

and their respective fundamental groups πproj
1 (XG ) and πproj

1 (X̂G )
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A loop in XG , in G and its lift in the universal covering

∗
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Conclusion

Precise links between the “topology” of Hom shifts and the
underlying graphs

What about graphs containing squares ?
In the general case: what is the complexity of computing the
fundamental group ? Of deciding if the subshift is “projectively
connected” ?
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