The Projective Fundamental Group of Hom shifts

Léo Paviet Salomon, Pascal Vanier

GREYC Université Caen-Normandie

March 29, 2023

< ∃⇒

< ∃→

< ∃⇒

- ∢ ⊒ →

*

- ∢ ⊒ →

< ∃→

We call X_G the set of all the possible *G*-colourings of \mathbb{Z} .

We call X_G the set of all the possible *G*-colourings of \mathbb{Z} . Many properties of X_G can be decided by looking at the graph.

- with the alphabet V(G) the vertices of G
- where the colours of adjacent cells in \mathbb{Z}^d are adjacent vertices in G

• with the alphabet V(G) the vertices of G

• where the colours of adjacent cells in \mathbb{Z}^d are adjacent vertices in GFormally: X_G is the set of graph morphisms from \mathbb{Z}^d to G ([Cha17]). In the rest of the talk, d = 2.

• with the alphabet V(G) the vertices of G

• where the colours of adjacent cells in \mathbb{Z}^d are adjacent vertices in GFormally: X_G is the set of graph morphisms from \mathbb{Z}^d to G ([Cha17]). In the rest of the talk, d = 2.

• with the alphabet V(G) the vertices of G

• where the colours of adjacent cells in \mathbb{Z}^d are adjacent vertices in GFormally: X_G is the set of graph morphisms from \mathbb{Z}^d to G ([Cha17]). In the rest of the talk, d = 2.

Useful object from topology: the fundamental group of a space

H 5

Useful object from topology: the fundamental group of a space

Idea: trace paths in the space, and see how we can continuously deform them.

Useful object from topology: the fundamental group of a space

 $\mathsf{Idea:}\xspace$ trace paths in the space, and see how we can continuously deform them.

The fundamental group $\pi_1(X)$ is a topological invariant.

Fix some $x_0 \in X$. We consider a particular set of paths, the loops based on x_0 . Two ideas: Fix some $x_0 \in X$. We consider a particular set of paths, the loops based on x_0 . Two ideas:

• A natural operation, the loop concatenation

Fix some $x_0 \in X$. We consider a particular set of paths, the loops based on x_0 . Two ideas:

- A natural operation, the loop concatenation
- Only consider loops up to *homotopy* (= deformation)

Fix some $x_0 \in X$. We consider a particular set of paths, the loops based on x_0 . Two ideas:

- A natural operation, the loop concatenation
- Only consider loops up to *homotopy* (= deformation)

 $\pi_1(X, x_0)$ is the group of loops, concatenation being the group operation.

Sphere:

 $\pi_1 = \{e\}$, the trivial group.

Léo Paviet Salomon

イロト イヨト イヨト イヨト

<ロト < 回ト < 回ト < 回ト < 回ト</p>

<ロト < 回ト < 回ト < 回ト < 回ト</p>

- ∢ ≣ →

A graph can also be seen as a topological space !

A graph can also be seen as a topological space !

A graph G

A graph can also be seen as a topological space !

A graph G

Topologically equivalent space

How to compute the fundamental group of this "topological graph" ?

How to compute the fundamental group of this "topological graph" ?

• Fix a spanning tree: n-1 edges

Graph *G* with *m* edges and *n* vertices

Fundamental group: F_2

How to compute the fundamental group of this "topological graph" ?

- Fix a spanning tree: n-1 edges
- Count edges *not* in this tree: k = m - (n - 1) edges

Graph *G* with *m* edges and *n* vertices

Fundamental group: F₂

How to compute the fundamental group of this "topological graph" ?

- Fix a spanning tree: n-1 edges
- Count edges *not* in this tree: k = m - (n - 1) edges
- Fundamental group is F_k

Graph *G* with *m* edges and *n* vertices

Fundamental group: F₂

7 / 27

How to compute the fundamental group of this "topological graph" ?

- Fix a spanning tree: n-1 edges
- Count edges *not* in this tree: k = m - (n - 1) edges

• Fundamental group is F_k Intuitively: those edges are the "cycle edges"; each one corresponds to an non-contractible loop

Graph *G* with *m* edges and *n* vertices

Fundamental group: F₂

7 / 27

Possible to adapt the ideas to Hom shifts ?

- ∢ ≣ →

Possible to adapt the ideas to Hom shifts ? Problem: a Hom shift $X \subseteq \Sigma^{\mathbb{Z}^2}$ is a totally disconnected space. Possible to adapt the ideas to Hom shifts ? Problem: a Hom shift $X \subseteq \Sigma^{\mathbb{Z}^2}$ is a totally disconnected space. Idea: define "local" fundamental groups, and take the limit.

Léo Paviet Salomon

The Projective Fundamental Group of Hom shifts 9 /

イロン イ団 と イヨン イヨン

9 / 27

Léo Paviet Salomon

The Projective Fundamental Group of Hom shifts 9 / 27

イロン イ団 と イヨン イヨン

≣) / 27

Léo Paviet Salomon

イロン イ団 と イヨン イヨン

*

Léo Paviet Salomon

イロン イ団 と イヨン イヨン

٠

Léo Paviet Salomon

イロン イ団 と イヨン イヨン

*

Léo Paviet Salomon

イロン イ団 と イヨン イヨン

Léo Paviet Salomon

The Projective Fundamental Group of Hom shifts 9 /

イロン イ団 と イヨン イヨン

9 / 27

٠

Léo Paviet Salomon

The Projective Fundamental Group of Hom shifts 9 / 27

イロン イ団 と イヨン イヨン

≣ 9 / 27

Léo Paviet Salomon

イロン イ団 と イヨン イヨン

Léo Paviet Salomon

The Projective Fundamental Group of Hom shifts 9 / 27

イロン イ団 と イヨン イヨン

≣ 9 / 27

Léo Paviet Salomon

The Projective Fundamental Group of Hom shifts 9 /

イロン イ団 と イヨン イヨン

9 / 27

To a loop in the graph G, we can associate a sequence of (here 1×1) patterns of X_G + a closed loop in \mathbb{Z}^2 .

• a trajectory path in \mathbb{Z}^2 (sequence of adjacent points)

< ∃⇒

- a *trajectory* path in \mathbb{Z}^2 (sequence of adjacent points)
- and a sequence of patterns of support B

- a *trajectory* path in \mathbb{Z}^2 (sequence of adjacent points)
- and a sequence of patterns of support B

Additional condition: consecutive patterns must "overlap"

- a *trajectory* path in \mathbb{Z}^2 (sequence of adjacent points)
- and a sequence of patterns of support B

- a *trajectory* path in \mathbb{Z}^2 (sequence of adjacent points)
- $\bullet\,$ and a sequence of patterns of support B

- a *trajectory* path in \mathbb{Z}^2 (sequence of adjacent points)
- $\bullet\,$ and a sequence of patterns of support B

- a *trajectory* path in \mathbb{Z}^2 (sequence of adjacent points)
- $\bullet\,$ and a sequence of patterns of support B

- ∢ ≣ →

- ∢ ⊒ →

- ∢ ⊒ →

▶ < ∃ >

▶ < ∃ >

▶ < ∃ >

▶ < ∃ >
A path is not required to stay in the same configuration:

▶ ∢ ≣ ▶

3

Intuitively, we can move inside a given configuration, or we can "jump" into another one.

∃ ► < ∃ ►</p>

Intuitively, we can move inside a given configuration, or we can "jump" into another one. This gives us a notion of path. What about deformations ?

- ∢ ≣ →

- ∢ ≣ →

A T >>

A T >>

- ∢ ≣ →

Homotopic paths: paths that be deformed into one another with a finite sequence of such elementary deformations.

- ∢ ⊒ →

Homotopic paths: paths that be deformed into one another with a finite sequence of such elementary deformations. We can therefore define *for each window* $B \in \mathbb{Z}^2$ a fundamental group.

This gives us one "fundamental group" per aperture window.

This gives us one "fundamental group" per aperture window.

Definition (Projective path)

- p_n is a path between the central patterns of support B_n of x and y
- p_{n+1} restricted to its central B_n window can be deformed in p_n

This gives us one "fundamental group" per aperture window.

Definition (Projective path)

- p_n is a path between the central patterns of support B_n of x and y
- p_{n+1} restricted to its central B_n window can be deformed in p_n

This gives us one "fundamental group" per aperture window.

Definition (Projective path)

- p_n is a path between the central patterns of support B_n of x and y
- p_{n+1} restricted to its central B_n window can be deformed in p_n

This gives us one "fundamental group" per aperture window.

Definition (Projective path)

- p_n is a path between the central patterns of support B_n of x and y
- p_{n+1} restricted to its central B_n window can be deformed in p_n

This gives us one "fundamental group" per aperture window.

Definition (Projective path)

- p_n is a path between the central patterns of support B_n of x and y
- p_{n+1} restricted to its central B_n window can be deformed in p_n

This gives us one "fundamental group" per aperture window.

Definition (Projective path)

- p_n is a path between the central patterns of support B_n of x and y
- p_{n+1} restricted to its central B_n window can be deformed in p_n

This gives us one "fundamental group" per aperture window.

Definition (Projective path)

- p_n is a path between the central patterns of support B_n of x and y
- p_{n+1} restricted to its central B_n window can be deformed in p_n

Theorem

Let T a – possibly infinite – tree. The projective fundamental group of X_T is trivial.

(人間) シスヨン スヨン

Theorem

Let T a – possibly infinite – tree. The projective fundamental group of X_T is trivial.

Technical remarks:

• T is bipartite: the theorem is in fact about its two projective path-components.

A B M A B M

Theorem

Let T a – possibly infinite – tree. The projective fundamental group of X_T is trivial.

Technical remarks:

- T is bipartite: the theorem is in fact about its two projective path-components.
- the definition of the projective fundamental group does not actually require X to be a subshift, so T being infinite is OK.

С	е	с	d	С	а
а	с	d	С	а	b
С	е	с	d	С	а
а	с	d	f	d	С
b	а	с	d	С	а
а	g	а	с	а	g

Configuration on X_T

С	е	с	d	С	а
а	с	d	С	а	b
С	е	с	d	С	а
а	с	d	f	d	С
b	а	с	d	С	а
а	g	а	с	а	g

Configuration on X_T

с	е	с	d	С	а
а	с	d	с	а	b
С	е	с	d	с	а
а	с	d	f	d	с
b	а	С	d	С	а
а	g	а	с	а	g

Configuration on X_T

С	е	с	d	С	а
а	с	d	С	а	b
С	е	с	d	С	а
а	с	d	С	d	С
b	а	с	d	с	а
а	g	а	с	а	g

Configuration on X_T

Ь	а	b	а	b	а
а	b	а	b	а	b
b	а	b	а	b	а
а	b	а	b	а	b
b	а	b	а	b	а
а	b	а	b	а	b

Configuration on X_T

Sketch of the proof: deform in the chessboard configuration

Let p a projective loop, and consider its *n*th projection p_n . Assume that:

Sketch of the proof: deform in the chessboard configuration

Let p a projective loop, and consider its *n*th projection p_n . Assume that:

• p_n 's trajectory is on $(m\mathbb{Z})^2$, with m >> n

Sketch of the proof: deform in the chessboard configuration

Let p a projective loop, and consider its *n*th projection p_n . Assume that:

- p_n 's trajectory is on $(m\mathbb{Z})^2$, with m >> n
- Each "segment" of the trajectory is coherent (belongs to the same configuration)
Let p a projective loop, and consider its *n*th projection p_n . Assume that:

- p_n 's trajectory is on $(m\mathbb{Z})^2$, with m >> n
- Each "segment" of the trajectory is coherent (belongs to the same configuration)

Let p a projective loop, and consider its *n*th projection p_n . Assume that:

- p_n 's trajectory is on $(m\mathbb{Z})^2$, with m >> n
- Each "segment" of the trajectory is coherent (belongs to the same configuration)

Extend the bottom side as before: go "up" in the tree

Let p a projective loop, and consider its *n*th projection p_n . Assume that:

- p_n 's trajectory is on $(m\mathbb{Z})^2$, with m >> n
- Each "segment" of the trajectory is coherent (belongs to the same configuration)

b	а	d	С	с	а
а	b	f	d	а	с
b	а	d	с	b	а

Let p a projective loop, and consider its *n*th projection p_n . Assume that:

- p_n 's trajectory is on $(m\mathbb{Z})^2$, with m >> n
- Each "segment" of the trajectory is coherent (belongs to the same configuration)

b	а	d	С	с	а
а	b	f	d	а	с
b	а	d	с	b	а
а	b	с	а	а	b

Let p a projective loop, and consider its *n*th projection p_n . Assume that:

- p_n 's trajectory is on $(m\mathbb{Z})^2$, with m >> n
- Each "segment" of the trajectory is coherent (belongs to the same configuration)

18 / 27

Let p a projective loop, and consider its nth projection p_n . Assume that:

- p_n 's trajectory is on $(m\mathbb{Z})^2$, with m >> n
- Each "segment" of the trajectory is coherent (belongs to the same configuration)

Let p a projective loop, and consider its nth projection p_n . Assume that:

- p_n 's trajectory is on $(m\mathbb{Z})^2$, with m >> n
- Each "segment" of the trajectory is coherent (belongs to the same configuration)

Let p a projective loop, and consider its *n*th projection p_n . Assume that:

- p_n 's trajectory is on $(m\mathbb{Z})^2$, with m >> n
- Each "segment" of the trajectory is coherent (belongs to the same configuration)

18 / 27

Let p a projective loop, and consider its *n*th projection p_n . Assume that:

- p_n 's trajectory is on $(m\mathbb{Z})^2$, with m >> n
- Each "segment" of the trajectory is coherent (belongs to the same configuration)

18 / 27

Let p a projective loop, and consider its *n*th projection p_n . Assume that:

- p_n 's trajectory is on $(m\mathbb{Z})^2$, with m >> n
- Each "segment" of the trajectory is coherent (belongs to the same configuration)

b	а	d	с	с	а
а	b	С	d	а	С

Let p a projective loop, and consider its *n*th projection p_n . Assume that:

- p_n 's trajectory is on $(m\mathbb{Z})^2$, with m >> n
- Each "segment" of the trajectory is coherent (belongs to the same configuration)

We either reduced the maximal "depth" reached in p_n or the number of times it is reached: repeat to get a contractible path in the chessboard.

→

Definition (Universal Covering)

The universal covering of a graph G is the smallest tree \mathcal{U}_G that admits a surjective morphism $\mathcal{U}_G\to G$

Intuitively, we "unroll" each cycle in an infinite branch of the tree.

Definition (Universal Covering)

The universal covering of a graph G is the smallest tree U_G that admits a surjective morphism $U_G \to G$

Intuitively, we "unroll" each cycle in an infinite branch of the tree.

Graph $G = C_3$

Definition (Universal Covering)

The universal covering of a graph G is the smallest tree U_G that admits a surjective morphism $U_G \to G$

Intuitively, we "unroll" each cycle in an infinite branch of the tree.

Graph $G = C_3$

Definition (Universal Covering)

The universal covering of a graph G is the smallest tree U_G that admits a surjective morphism $U_G \to G$

Intuitively, we "unroll" each cycle in an infinite branch of the tree.

Graph $G = C_3$

Universal cover of G

In the following, $\phi: \mathcal{U}_G \to G$ is one such surjective morphism.

Notation: For a graph G, we write $\hat{X}_G = X_{\mathcal{U}_G}$

▶ < E >

Notation: For a graph G, we write $\hat{X}_G = X_{\mathcal{U}_G}$ Note that if G a cycle, \mathcal{U}_G is infinite: \hat{X}_G is not actually a subshift (it is not compact, for example). The covering $\phi: \mathcal{U}_G \to G$ induces a covering $\hat{\phi}: \hat{X}_G \to X_G$ (apply ϕ pointwise).

▶ ★ 臣 ▶

э

Lift

The covering $\phi: \mathcal{U}_G \to G$ induces a covering $\hat{\phi}: \hat{X}_G \to X_G$ (apply ϕ pointwise).

In some cases (more on that below), this map admits a section: each $x \in X_G$ can be lifted to some $\hat{x} \in \hat{X}_G$

Lift

The covering $\phi: \mathcal{U}_G \to G$ induces a covering $\hat{\phi}: \hat{X}_G \to X_G$ (apply ϕ pointwise).

In some cases (more on that below), this map admits a section: each $x \in X_G$ can be lifted to some $\hat{x} \in \hat{X}_G$

с	а	b	с
b	С	а	b
а	b	С	а

Point of X_{C_3}

Lift

The covering $\phi: \mathcal{U}_G \to G$ induces a covering $\hat{\phi}: \hat{X}_G \to X_G$ (apply ϕ pointwise).

In some cases (more on that below), this map admits a section: each $x \in X_G$ can be lifted to some $\hat{x} \in \hat{X}_G$

Point of X_{C_3}

Point of \hat{X}_{C_3}

▶ < ∃ >

→

- ∢ ⊒ →

- ∢ ≣ →

- ∢ ≣ →

a ₁	<i>b</i> ₂
d _?	<i>c</i> 3

Does not lift

- ∢ ⊒ →

This gives us the following theorem:

Theorem (Square-free)

Let G a non-bipartite, loop-free, square-free graph, with m edges and n vertices. Then, $\pi_1^{\text{proj}}(G) = F_{m-n+1}$, the free-group on m - n + 1 generators.

- ∢ ≣ →

Understand the link between

• the graph G and its universal covering \mathcal{U}_G

< 三→ < 三→

Understand the link between

- \bullet the graph G and its universal covering \mathcal{U}_G
- the induced Hom shifts X_G and \hat{X}_G

▶ < ∃ >

Understand the link between

- the graph G and its universal covering \mathcal{U}_G
- the induced Hom shifts X_G and \hat{X}_G
- and their respective fundamental groups $\pi_1^{proj}(X_G)$ and $\pi_1^{proj}(\hat{X}_G)$

d	с	
*	d	ĺ

С	*	
*	d	ĺ

Léo Paviet Salomon

25 / 27

• Precise links between the "topology" of Hom shifts and the underlying graphs

4 A 1

★ 医 ▶ ★ 医 ▶

- Precise links between the "topology" of Hom shifts and the underlying graphs
- What about graphs containing squares ?

→

- Precise links between the "topology" of Hom shifts and the underlying graphs
- What about graphs containing squares ?
- In the general case: what is the complexity of computing the fundamental group ? Of deciding if the subshift is "projectively connected" ?

Nishant Chandgotia.

Four-cycle free graphs, height functions, the pivot property and entropy minimality.

Ergodic Theory and Dynamical Systems, 37(4):1102–1132, 2017.

William Geller and James Propp. The projective fundamental group of a Z²-shift. Ergodic Theory and Dynamical Systems, 15(6):1091−1118, 1995.