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Alphabet: finite set of
colours
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SFT

If the family of forbidden patterns F is finite, then XF is a subshift of
finite type (SFT).

Despite being described by finite information, they are quite complicated
objects; given a SFT X , all those problems are undecidable in dimension
d ≥ 2:

Is X empty ?
Does X contain an aperiodic configuration ?
How many patterns of size n × n are there in X ?

Motivates a wide range of questions (extra-assumptions so that they
become decidable ? Undecidable, but how much ? What kind of
complicated objects can we obtain using only SFTs ?)
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Shift

The name subshift comes from the shift functions σu.

For a given subshift X , a point x ∈ X and u ∈ Zd ,

∀i ∈ Zd , σu(x)(i) = x(i + u)

A subshift is a closed set X verifying σu(X ) = X for all u (and so
subshifts are compact).
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Closed ?

Topology: generated by the cylinders.

For u any pattern, we note [u] =
{
x ∈ AZd | x|support(u) = u

}
Remark: Continuous functions X → Zd depend only on a finite pattern
around the origin of Zd .
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Minimal subshifts

Another important class of subshifts: minimal subshifts. Several
equivalent definitions:

Contains no proper subshift
Every configuration contains every pattern
Every pattern is contained in all the (sufficiently large) patterns (X
is recurrent).

Formally, and with Ln(X ) the patterns of support [0, n − 1]d :

∀n > 0, ∃N ≥ n,∀w ∈ Ln(X ), ∀W ∈ LN(X ),w vW
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Topological full group: definition

Definition

Let X ⊆ AZd

a subshift. The (topological) full group of X is

JX K = {x ∈ X 7→ ση(x)(x) ∈ Homeo(X ) | η : X → Zd (continuous)}

In this talk: always talk about the topological full group, so we simply
use full group without ambiguity.
Continuous function: only depend on a bounded ball around the origin.
The full group of a subshift is a conjugacy invariant.
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First example

First simple example: X3 the set of proper 3-colourings of Z.
Alphabet: {�,�,�}

. . . . . .

Define for each colour � ∈ {�,�,�} the involution:

σ�(x) =


σ(x) if x0 = �

σ−1(x) if x−1 = �

x otherwise

Claim: 〈σ�, σ�, σ�〉 = Z2 ∗ Z2 ∗ Z2 ≤ JX3K.
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Sketch of proof

Let σcn−1 . . . σc0 ∈ 〈σ�, σ�, σ�〉. It acts non-trivially on · · · · c0c1 . . . cn if
cn 6= c0

Example for σ�σ�σ�:

. . . . . .. . . . . .
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Full group of minimal subshifts

Previous example: “simple” subshift X3, but JX K contains free groups →
huge group.

Restrict our attention to minimal subshifts. We know a lot ! Main
results:

Theorem
If X is a minimal Z subshift:

JX K is amenable [JM13]
JX K′ is finitely generated and simple [Mat06], but not finitely
presented [GM14]

This is a way to construct infinitely many non-isomorphic simple, finitely
generated, non-elementary amenable groups.
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Kakutani-Rokhlin partition

One of the main tools to study full groups of Z-subshifts:
Kakutani-Rokhlin partition.

Fix any word u.v ∈ Ln(X ), and x ∈ X with u.v at the origin.
X minimal =⇒ u.v appears everywhere with bounded gaps.
Let r the “return word”, kr its length.

There are finitely many possible r ∈ R(u.v).
=⇒

⊔
r [u.rv ] is a partition of u.v

By definition of r , (σi ([u.rv ]))i<kr are all distinct
σkr (x) also contains u at the origin: repeat !

=⇒
⊔

r∈Rn

⊔
i<|r |

σi ([u.rv ]) is a partition of X .

u v

r , |r | = kr

w0 w1
wk−1

r ′

w ′0
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Tilings and Subshifts
Topological full group
In higher dimensions

Full group definition and examples
On minimal subshifts

Towers

Also called Kakutani-Rokhlin towers:

u.r0v

σ1(u.r0v)

σ2(u.r0v)

u.r1v

σ1(u.r1v)

σ2(u.r1v)

σ3(u.r1v)

σ4(u.r1v)

u.r2v

σ1(u.r2v)

σ2(u.r2v)

Within each tower, each shift only takes up one step higher, but at the
top of the towers, we can fall back to any of the bases.
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Topological full group
In higher dimensions

Full group definition and examples
On minimal subshifts

Act on the towers

Link with the full group:
With large enough neighbourhood: we “know” in with atom we are

=⇒ can act constantly on each atom
=⇒ can permute atoms only within a tower
If X is a minimal subshift, we therefore have:∏

r∈R(u.v)

S|r | ≤ JX K

where R(u.v) is the set of return words for some u.v ∈ Ln(X )
Fix x ∈ X , and let un.vn = x[−n,n]. We define

JX Kx,n =
∏

r∈R(un.vn)

S|r |

and
JX Kx =

⋃
n∈N

JX Kx,n

Note: the (JX Kx,n)n∈N are increasing.
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Tilings and Subshifts
Topological full group
In higher dimensions

Full group definition and examples
On minimal subshifts

Decomposition of the full group

Studying JX Kx ≈ studying Sn. For example:
JX K′x,n '

∏
r∈R(un.vn)

Alt|r |

=⇒ Every element of JX K′x is a commutator
More importantly [Mat06]: if x , y ∈ X are in different orbits, then

JX K′ = JX K′xJX K′y

Using this, and studying elements of JX K that “correspond” to 3-cycles,
we can even compute an explicit presentation of JX Kx for minimal
Z-subshifts [GM18].
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Tilings and Subshifts
Topological full group
In higher dimensions

Multidimensional minimal
Various lamplighter groups

Things break in dimension 2

Construction from Elek and Monod ( [EM13]): minimal Z2 subshift with
non-amenable full group (impossible for Z-subshifts)

Idea: re-use the involutions defined previously (obtain a free subgroup),
and “standard subshift tricks” to make the subshift recurrent – and so
minimal.
Formally: we will consider some sub-subshift of the set of proper 6-edge
colourings of Z2.
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Sketch of the proof

Define σa, σb, σc as in the 3-colouring example.

Claim: 〈σa, σb, σc〉 is free, and each σi is an involution.
Same strategy as for 3-colourings: find a configuration on which every
τ ∈ 〈σa, σb, σc〉 acts non-trivially.
In fact, the shift σ already acts freely on X ! Indeed, all the
configurations are aperiodic.
For τ = σcn−1 . . . σc0 ∈ 〈σa, σb, σc〉, there exists a configuration x ∈ X
whose column {0} × N is (c0 . . . cn−1 )∞, and c0 6= so τ(x) 6= x .
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Similar results

We still have some similar results.

As for Z-subshifts:

Theorem

Let X a minimal Zd subshift. Then,
JX K′ is finitely generated [CJN20]

JX K′ is simple [Mat12]

The previous example show that we lose amenability in higher
dimensions. Do we have something more ?
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Lamplighters

We define the d-dimensional lamplighter group as

Ld = Z2 o Zd

=
〈
a, s1, . . . , sd | a2, (awaw−1)2 for all w ∈ {s1, . . . , sd}∗, si sjs−1

i s−1
j

〉

Ld is best understood via its action on ZZd

2 :

ZZd

2 ≈ a d-dimensional grid with a “lamplighter” (on or off) at each
position
a toggles the “current” lamplighter (and so a2 does nothing)
For 0 ≤ i ≤ d , si move one step in direction ei ∈ Zd (so the si
commute)
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Embed Ld in JX K?

Proposition ( [BB22])

For any Z-subshift X , L2 = Z2 o Z2 6≤ JX K

Proof idea: lower bound on the “growth rate” of faithful actions of L2.
Intuitively, L2’s faithful actions must have a quadratic growth rate, while
X is a one-dimensional subshift.
This “dimension” obstruction does not hold for Z2-subshift !
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Embed L2 in JX K a bidimensional subshift

Take X the sunny-side-up: configurations on {�,�} with at most one �.

Define three elements of JX K: σh, σv , τ .

σh = σ(2,0)

σv = σ(0,1)

τ = x 7→


σ(1,0)(x) if x(0,0) = �

σ(−1,0)(x) if x(−1,0) = �

x otherwise

Idea: encode the state of the lamplighter in the “parity” of the �. The
action is clearly not free, but this is still enough to have
〈σh, σv , τ〉 = L2 ≤ JX K

Léo Paviet Salomon Topological Full Group and Tilings 21 / 25
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Satisfies the lamplighter relations

Clearly, σhσv = σvσh, and τ2 = idX .

Check on an example that it satisfies the relations (τwτw−1)2 = idX ,
with w = σv : need to show that doing τσvτσ−1

v twice does nothing.

τ σv τ σ−1
v τ σv τ σ−1

v
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Summary

Topological full groups JX K (and their derived subgroup) of tilings have
some strong algebraic properties, in any dimension (simplicity, finitely
generated).

Some of those algebraic properties heavily depend:

On the structure of the subshift (minimal or not, recursive language
and decidable word problem ...)
On the dimension (amenability, “growth rate”)

Some natural questions: how complex can TFGs of multidimensional SFT
be (e.g. how hard are their word or torsion problems) ? Are there are
other obstructions to embeddability than growth rates of group actions ?
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Summary

Topological full groups JX K (and their derived subgroup) of tilings have
some strong algebraic properties, in any dimension (simplicity, finitely
generated).
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Projection, block map, factor

“Good” functions between two subshifts X and Y : block maps.

They are exactly the continuous functions that commute with all the
shift operators.

f

f −1

The subshifts are conjugated if f is reversible.

This is the "correct" isomorphism notion between subshifts (more
generally, between dynamical systems).
“Properties” preserved by conjugacy are called conjugacy invariants
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Grigorchuk group

Another famous example of finitely generated (residually finite, torsion)
group of intermediate growth: the (first) Grigorchuk group G

Defined using an automaton (actually a transducer):

c

a

b d

e
0|0

1/1

0|1, 1|0

0|0

1|1

0|0

1|1

0|0, 1|1

Notation p|q: when reading p, move to the correct state and output q.
Starting from state c and reading 1100 =⇒ end in state e, output 1101.
Each state induces an automorphism of {0, 1}N, and G = 〈a, b, c , d〉.
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Embed G in some full group

Previous definition makes it clear that G acts on {0, 1}N, and the graph
of the action looks like this:

. . .a a a ab b b
d d d d d

c

b

c cd

c c

Lefmost point: 1111 · · · ∈ {0, 1}N, then 011 . . . ...
More or less a linear shape: in fact, we can obtain it as a tiling of Z by
the graphs

a

d d c c b b
b b c

c d d

Using the usual involutions σi which follow the edge i ∈ {a, b, c , d} in
both directions at the origin, we have G ∈ JX K.
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