Subshift definitions Minimal subshifts

Topological Full Group and Tilings

Léo Paviet Salomon

GREYC Université Caen-Normandie

November 7, 2023

Léo Paviet Salomon

Subshift definitions Minimal subshifts

Tilings

Subshift definitions Minimal subshifts

Tilings

Subshift definitions Minimal subshifts

Tilings

Configuration on the alphabet \mathcal{A} $\iff \mathcal{A}$ -colouring of \mathbb{Z}^d that does not contain any forbidden pattern

Subshift definitions Minimal subshifts

Tilings

Configuration on the alphabet $\mathcal{A} \iff \mathcal{A}$ -colouring of \mathbb{Z}^d that does not contain any forbidden pattern

Subshift definitions Minimal subshifts

Tilings

Configuration on the alphabet \mathcal{A} $\iff \mathcal{A}$ -colouring of \mathbb{Z}^d that does not contain any forbidden pattern

Subshift definitions Minimal subshifts

Tilings

Configuration on the alphabet $\mathcal{A} \iff \mathcal{A}$ -colouring of \mathbb{Z}^d that does not contain any forbidden pattern

Subshift definitions Minimal subshifts

Tilings

Configuration on the alphabet $\mathcal{A} \iff \mathcal{A}$ -colouring of \mathbb{Z}^d that does not contain any forbidden pattern

Subshift definitions Minimal subshifts

Tilings

The set of all the valid configurations is called a **subshift**, denoted by $X_{\mathcal{F}}$

Configuration on the alphabet \mathcal{A} $\iff \mathcal{A}$ -colouring of \mathbb{Z}^d that does not contain any forbidden pattern

Subshift definitions Minimal subshifts

If the family of forbidden patterns \mathcal{F} is finite, then $X_{\mathcal{F}}$ is a **subshift of finite type** (SFT).

If the family of forbidden patterns \mathcal{F} is finite, then $X_{\mathcal{F}}$ is a **subshift of finite type** (SFT).

Despite being described by finite information, they are quite complicated objects; given a SFT X, all those problems are undecidable *in dimension* $d \ge 2$:

• Is X empty ?

- Is X empty ?
- Does X contain an aperiodic configuration ?

- Is X empty ?
- Does X contain an aperiodic configuration ?
- How many patterns of size $n \times n$ are there in X ?

- Is X empty ?
- Does X contain an aperiodic configuration ?
- How many patterns of size $n \times n$ are there in X ?

Motivates a wide range of questions (extra-assumptions so that they become decidable ? Undecidable, but how much ? What kind of complicated objects can we obtain using only SFTs ?)

Subshift definitions Minimal subshifts

Shift

The name *subshift* comes from the shift functions σ^{u} .

Subshift definitions Minimal subshifts

The name subshift comes from the shift functions σ^u . For a given subshift X, a point $x \in X$ and $u \in \mathbb{Z}^d$,

$$\forall i \in \mathbb{Z}^d, \sigma^u(x)(i) = x(i+u)$$

The name subshift comes from the shift functions σ^u . For a given subshift X, a point $x \in X$ and $u \in \mathbb{Z}^d$,

$$\forall i \in \mathbb{Z}^d, \sigma^u(x)(i) = x(i+u)$$

A subshift is a closed set X verifying $\sigma^u(X) = X$ for all u (and so subshifts are compact).

Subshift definitions Minimal subshifts

Closed ?

Topology: generated by the **cylinders**.

Subshift definitions Minimal subshifts

Closed ?

Topology: generated by the **cylinders**. For *u* any pattern, we note $[u] = \left\{ x \in \mathcal{A}^{\mathbb{Z}^d} \mid x_{|\text{support}(u)} = u \right\}$

Subshift definitions Minimal subshifts

Closed ?

Topology: generated by the **cylinders**. For *u* any pattern, we note $[u] = \left\{ x \in \mathcal{A}^{\mathbb{Z}^d} \mid x_{|\text{support}(u)} = u \right\}$ **Remark:** Continuous functions $X \to \mathbb{Z}^d$ depend only on a finite pattern around the origin of \mathbb{Z}^d .

Subshift definitions Minimal subshifts

Minimal subshifts

Another important class of subshifts: **minimal subshifts**. Several equivalent definitions:

Subshift definitions Minimal subshifts

Minimal subshifts

Another important class of subshifts: **minimal subshifts**. Several equivalent definitions:

• Contains no proper subshift

Minimal subshifts

Another important class of subshifts: **minimal subshifts**. Several equivalent definitions:

- Contains no proper subshift
- Every configuration contains every pattern

Minimal subshifts

Another important class of subshifts: **minimal subshifts**. Several equivalent definitions:

- Contains no proper subshift
- Every configuration contains every pattern
- Every pattern is contained in *all* the (sufficiently large) patterns (X is **recurrent**).

Minimal subshifts

Another important class of subshifts: **minimal subshifts**. Several equivalent definitions:

- Contains no proper subshift
- Every configuration contains every pattern
- Every pattern is contained in *all* the (sufficiently large) patterns (X is **recurrent**).

Formally, and with $\mathcal{L}_n(X)$ the patterns of support $[0, n-1]^d$:

$$\forall n > 0, \exists N \ge n, \forall w \in \mathcal{L}_n(X), \forall W \in \mathcal{L}_N(X), w \sqsubseteq W$$

Subshift definitions Minimal subshifts

Example of a minimal \mathbb{Z}^2 -subshift

Full group definition and examples On minimal subshifts

Topological full group: definition

Definition

Let $X \subseteq \mathcal{A}^{\mathbb{Z}^d}$ a subshift. The **(topological) full group** of X is

 $\llbracket X \rrbracket = \{ x \in X \mapsto \sigma^{\eta(x)}(x) \in \operatorname{Homeo}(X) \, | \, \eta \colon X \to \mathbb{Z}^d \text{ (continuous)} \}$

Full group definition and examples On minimal subshifts

Topological full group: definition

Definition

Let $X \subseteq \mathcal{A}^{\mathbb{Z}^d}$ a subshift. The **(topological) full group** of X is

 $\llbracket X \rrbracket = \{ x \in X \mapsto \sigma^{\eta(x)}(x) \in \operatorname{Homeo}(X) \, | \, \eta \colon X \to \mathbb{Z}^d \text{ (continuous)} \}$

In this talk: always talk about the topological full group, so we simply use *full group* without ambiguity.

Full group definition and examples On minimal subshifts

Topological full group: definition

Definition

Let $X \subseteq \mathcal{A}^{\mathbb{Z}^d}$ a subshift. The **(topological) full group** of X is

 $\llbracket X \rrbracket = \{ x \in X \mapsto \sigma^{\eta(x)}(x) \in \operatorname{Homeo}(X) \, | \, \eta \colon X \to \mathbb{Z}^d \text{ (continuous)} \}$

In this talk: always talk about the topological full group, so we simply use $f\!ull$ group without ambiguity.

Continuous function: only depend on a bounded ball around the origin.

Full group definition and examples On minimal subshifts

Topological full group: definition

Definition

Let $X \subseteq \mathcal{A}^{\mathbb{Z}^d}$ a subshift. The **(topological) full group** of X is

 $\llbracket X \rrbracket = \{ x \in X \mapsto \sigma^{\eta(x)}(x) \in \operatorname{Homeo}(X) \, | \, \eta \colon X \to \mathbb{Z}^d \text{ (continuous)} \}$

In this talk: always talk about the topological full group, so we simply use *full group* without ambiguity.

Continuous function: only depend on a *bounded* ball around the origin. The full group of a subshift is a conjugacy invariant.

Full group definition and examples On minimal subshifts

First example

First simple example: X_3 the set of proper 3-colourings of \mathbb{Z} . Alphabet: $\{\blacksquare, \blacksquare, \blacksquare\}$

Full group definition and examples On minimal subshifts

First example

First simple example: X_3 the set of proper 3-colourings of \mathbb{Z} . Alphabet: $\{\blacksquare, \blacksquare, \blacksquare\}$

Define for each colour $\blacksquare \in \{\blacksquare, \blacksquare, \blacksquare\}$ the involution:

$$\sigma_{\blacksquare}(x) = \begin{cases} \sigma(x) & \text{if } x_0 = \blacksquare \\ \sigma^{-1}(x) & \text{if } x_{-1} = \blacksquare \\ x & \text{otherwise} \end{cases}$$

Full group definition and examples On minimal subshifts

First example

First simple example: X_3 the set of proper 3-colourings of \mathbb{Z} . Alphabet: $\{\blacksquare, \blacksquare, \blacksquare\}$

Define for each colour $\blacksquare \in \{\blacksquare, \blacksquare, \blacksquare\}$ the involution:

$$\sigma_{\blacksquare}(x) = \begin{cases} \sigma(x) & \text{if } x_0 = \blacksquare \\ \sigma^{-1}(x) & \text{if } x_{-1} = \blacksquare \\ x & \text{otherwise} \end{cases}$$

Claim: $\langle \sigma_{\blacksquare}, \sigma_{\blacksquare}, \sigma_{\blacksquare} \rangle = \mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2 \leq \llbracket X_3 \rrbracket.$

Full group definition and examples On minimal subshifts

Sketch of proof

Let $\sigma_{c_{n-1}} \dots \sigma_{c_0} \in \langle \sigma_{\blacksquare}, \sigma_{\blacksquare}, \sigma_{\blacksquare} \rangle$. It acts non-trivially on $\dots c_0 c_1 \dots c_n$ if $c_n \neq c_0$

Full group definition and examples On minimal subshifts

Sketch of proof

Let $\sigma_{c_{n-1}} \dots \sigma_{c_0} \in \langle \sigma_{\blacksquare}, \sigma_{\blacksquare}, \sigma_{\blacksquare} \rangle$. It acts non-trivially on $\dots c_0 c_1 \dots c_n$ if $c_n \neq c_0$ Example for $\sigma_{\blacksquare} \sigma_{\blacksquare} \sigma_{\blacksquare}$:

Full group definition and examples On minimal subshifts

Sketch of proof

Let $\sigma_{c_{n-1}} \dots \sigma_{c_0} \in \langle \sigma_{\blacksquare}, \sigma_{\blacksquare}, \sigma_{\blacksquare} \rangle$. It acts non-trivially on $\dots c_0 c_1 \dots c_n$ if $c_n \neq c_0$ Example for $\sigma_{\blacksquare} \sigma_{\blacksquare} \sigma_{\blacksquare}$:

Full group of minimal subshifts

Previous example: "simple" subshift X_3 , but $[\![X]\!]$ contains free groups \rightarrow huge group.

Full group of minimal subshifts

Previous example: "simple" subshift X_3 , but [X] contains free groups \rightarrow huge group.

Restrict our attention to **minimal subshifts**. We know a lot ! Main results:

Theorem

If X is a minimal \mathbb{Z} subshift:

Full group of minimal subshifts

Previous example: "simple" subshift X_3 , but [X] contains free groups \rightarrow huge group.

Restrict our attention to **minimal subshifts**. We know a lot ! Main results:

Theorem

If X is a minimal \mathbb{Z} subshift:

• $\llbracket X \rrbracket$ is amenable [JM13]

Full group of minimal subshifts

Previous example: "simple" subshift X_3 , but $\llbracket X \rrbracket$ contains free groups \rightarrow huge group.

Restrict our attention to **minimal subshifts**. We know a lot ! Main results:

Theorem

If X is a minimal \mathbb{Z} subshift:

- $\llbracket X \rrbracket$ is amenable [JM13]
- [X]' is finitely generated and simple [Mat06], but not finitely presented [GM14]

Full group of minimal subshifts

Previous example: "simple" subshift X_3 , but $\llbracket X \rrbracket$ contains free groups \rightarrow huge group.

Restrict our attention to **minimal subshifts**. We know a lot ! Main results:

Theorem

If X is a minimal \mathbb{Z} subshift:

- [X] is amenable [JM13]
- [X]' is finitely generated and simple [Mat06], but not finitely presented [GM14]

This is a way to construct infinitely many non-isomorphic simple, finitely generated, non-elementary amenable groups.

Full group definition and examples On minimal subshifts

Kakutani-Rokhlin partition

One of the main tools to study full groups of $\mathbb{Z}\text{-subshifts:}$ Kakutani-Rokhlin partition.

Full group definition and examples On minimal subshifts

Kakutani-Rokhlin partition

One of the main tools to study full groups of \mathbb{Z} -subshifts: Kakutani-Rokhlin partition.

Fix any word $u.v \in \mathcal{L}_n(X)$, and $x \in X$ with u.v at the origin.

Full group definition and examples On minimal subshifts

Kakutani-Rokhlin partition

Full group definition and examples On minimal subshifts

Kakutani-Rokhlin partition

Full group definition and examples On minimal subshifts

Kakutani-Rokhlin partition

- There are finitely many possible $r \in R(u.v)$.
- $\implies \bigsqcup_r [u.rv]$ is a partition of u.v

Kakutani-Rokhlin partition

- There are finitely many possible $r \in R(u.v)$.
- $\implies \bigsqcup_r [u.rv]$ is a partition of u.v
 - By definition of r, $(\sigma_i([u.rv]))_{i < k_r}$ are all distinct

Kakutani-Rokhlin partition

- There are finitely many possible $r \in R(u.v)$.
- $\implies \bigsqcup_r [u.rv]$ is a partition of u.v
 - By definition of r, $(\sigma_i([u.rv]))_{i < k_r}$ are all distinct

Kakutani-Rokhlin partition

- There are finitely many possible $r \in R(u.v)$.
- $\implies \bigsqcup_r [u.rv]$ is a partition of u.v
 - By definition of r, $(\sigma_i([u.rv]))_{i < k_r}$ are all distinct

Kakutani-Rokhlin partition

- There are finitely many possible $r \in R(u.v)$.
- $\implies \bigsqcup_r [u.rv]$ is a partition of u.v
 - By definition of r, $(\sigma_i([u.rv]))_{i < k_r}$ are all distinct

Kakutani-Rokhlin partition

- There are finitely many possible $r \in R(u.v)$.
- $\implies \bigsqcup_r [u.rv]$ is a partition of u.v
 - By definition of r, $(\sigma_i([u.rv]))_{i < k_r}$ are all distinct
 - $\sigma_{k_r}(x)$ also contains u at the origin: repeat !

Kakutani-Rokhlin partition

- There are finitely many possible $r \in R(u.v)$.
- $\implies \bigsqcup_r [u.rv]$ is a partition of u.v
 - By definition of r, $(\sigma_i([u.rv]))_{i < k_r}$ are all distinct
 - $\sigma_{k_r}(x)$ also contains u at the origin: repeat !
- $\implies \bigsqcup_{r \in R_n} \bigsqcup_{i < |r|} \sigma_i([u.rv]) \text{ is a partition of } X.$

Full group definition and examples On minimal subshifts

Towers

Also called Kakutani-Rokhlin towers:

Full group definition and examples On minimal subshifts

Also called Kakutani-Rokhlin towers:

Towers

Full group definition and examples On minimal subshifts

Also called Kakutani-Rokhlin towers:

Towers

Full group definition and examples On minimal subshifts

Also called Kakutani-Rokhlin towers:

Towers

Within each tower, each shift only takes up one step higher, but at the top of the towers, we can fall back to *any* of the bases.

Full group definition and examples On minimal subshifts

Act on the towers

Link with the full group:

• With large enough neighbourhood: we "know" in with atom we are

Full group definition and examples On minimal subshifts

Act on the towers

Link with the full group:

- With large enough neighbourhood: we "know" in with atom we are
- \implies can act constantly on each atom

Act on the towers

Link with the full group:

- With large enough neighbourhood: we "know" in with atom we are
- \implies can act constantly on each atom
- \implies can permute atoms only within a tower

Full group definition and examples On minimal subshifts

Act on the towers

Link with the full group:

- With large enough neighbourhood: we "know" in with atom we are
- \implies can act constantly on each atom
- \implies can permute atoms only within a tower

If X is a minimal subshift, we therefore have:

$$\prod_{r\in R(u.v)}\mathfrak{S}_{|r|}\leq \llbracket X\rrbracket$$

where R(u.v) is the set of return words for some $u.v \in \mathcal{L}_n(X)$

Full group definition and examples On minimal subshifts

Act on the towers

Link with the full group:

- With large enough neighbourhood: we "know" in with atom we are
- \implies can act constantly on each atom
- \implies can permute atoms only within a tower

If X is a minimal subshift, we therefore have:

$$\prod_{r\in R(u.v)}\mathfrak{S}_{|r|}\leq \llbracket X\rrbracket$$

where R(u.v) is the set of return words for some $u.v \in \mathcal{L}_n(X)$ Fix $x \in X$, and let $u_n.v_n = x_{[-n,n]}$. We define

$$\llbracket X \rrbracket_{x,n} = \prod_{r \in R(u_n,v_n)} \mathfrak{S}_{|r|}$$

and

$$\llbracket X \rrbracket_{x} = \bigcup_{n \in \mathbb{N}} \llbracket X \rrbracket_{x,n}$$

Full group definition and examples On minimal subshifts

Act on the towers

Link with the full group:

- With large enough neighbourhood: we "know" in with atom we are
- \implies can act constantly on each atom
- \implies can permute atoms only within a tower

If X is a minimal subshift, we therefore have:

$$\prod_{r\in R(u.v)}\mathfrak{S}_{|r|}\leq \llbracket X\rrbracket$$

where R(u.v) is the set of return words for some $u.v \in \mathcal{L}_n(X)$ Fix $x \in X$, and let $u_n.v_n = x_{[-n,n]}$. We define

$$\llbracket X \rrbracket_{x,n} = \prod_{r \in R(u_n,v_n)} \mathfrak{S}_{|r|}$$

and

$$[\![X]\!]_x = \bigcup_{n \in \mathbb{N}} [\![X]\!]_{x,n}$$

Note: the $(\llbracket X \rrbracket_{x,n})_{n \in \mathbb{N}}$ are increasing.

Léo Paviet Salomon

Full group definition and examples On minimal subshifts

Decomposition of the full group

Studying
$$\llbracket X \rrbracket_x \approx$$
 studying \mathfrak{S}_n . For example:
• $\llbracket X \rrbracket'_{x,n} \simeq \prod_{r \in R(u_n, v_n)} \operatorname{Alt}_{|r|}$

Full group definition and examples On minimal subshifts

Decomposition of the full group

Studying
$$[X]_x \approx$$
 studying \mathfrak{S}_n . For example:
• $[X]' \simeq \prod Alt_{|x|}$

•
$$\llbracket \Lambda \rrbracket_{x,n} \simeq \prod_{r \in R(u_n,v_n)} \operatorname{Alb}_{|r|}$$

$$\implies$$
 Every element of $\llbracket X \rrbracket'_x$ is a commutator

Full group definition and examples On minimal subshifts

Decomposition of the full group

Studying
$$\llbracket X \rrbracket_x \approx$$
 studying \mathfrak{S}_n . For example:

•
$$\llbracket X \rrbracket'_{x,n} \simeq \prod_{r \in R(u_n.v_n)} \operatorname{Alt}_{|r|}$$

$$\implies$$
 Every element of $\llbracket X \rrbracket'_x$ is a commutator

More importantly [Mat06]: if $x, y \in X$ are in different orbits, then

$$\llbracket X \rrbracket' = \llbracket X \rrbracket'_x \llbracket X \rrbracket'_y$$

Full group definition and examples On minimal subshifts

Decomposition of the full group

Studying
$$\llbracket X \rrbracket_{x} \approx$$
 studying \mathfrak{S}_{n} . For example:

•
$$\llbracket X \rrbracket'_{x,n} \simeq \prod_{r \in R(u_n.v_n)} \operatorname{Alt}_{|r|}$$

$$\implies$$
 Every element of $\llbracket X \rrbracket'_x$ is a commutator

More importantly [Mat06]: if $x, y \in X$ are in different orbits, then

$$\llbracket X \rrbracket' = \llbracket X \rrbracket'_x \llbracket X \rrbracket'_y$$

Using this, and studying elements of [X] that "correspond" to 3-cycles, we can even compute an explicit presentation of $[X]_x$ for minimal \mathbb{Z} -subshifts [GM18].

Multidimensional minimal Various lamplighter groups

Things break in dimension 2

Construction from Elek and Monod ([EM13]): minimal \mathbb{Z}^2 subshift with non-amenable full group (impossible for \mathbb{Z} -subshifts)

Multidimensional minimal Various lamplighter groups

Things break in dimension 2

Construction from Elek and Monod ([EM13]): minimal \mathbb{Z}^2 subshift with non-amenable full group (impossible for \mathbb{Z} -subshifts) Idea: re-use the involutions defined previously (obtain a free subgroup), and "standard subshift tricks" to make the subshift recurrent – and so minimal.

Multidimensional minimal Various lamplighter groups

Things break in dimension 2

Construction from Elek and Monod ([EM13]): minimal \mathbb{Z}^2 subshift with non-amenable full group (impossible for \mathbb{Z} -subshifts) Idea: re-use the involutions defined previously (obtain a free subgroup), and "standard subshift tricks" to make the subshift recurrent – and so minimal.

Formally: we will consider some sub-subshift of the set of proper 6-edge colourings of $\mathbb{Z}^2.$

Multidimensional minimal Various lamplighter groups

Elek-Monod construction

Alphabet: $\{-, -, I, a, b, c\}$ Fix $(w_i)_{i \in \mathbb{N}} = (abb, ca, ...)$ an enumeration of $\langle a, b, c \mid a^2 = b^2 = c^2 \rangle$.

Multidimensional minimal Various lamplighter groups

Elek-Monod construction

Alphabet: $\{-, -, I, a, b, c\}$ Fix $(w_i)_{i \in \mathbb{N}} = (abb, ca, ...)$ an enumeration of $\langle a, b, c \mid a^2 = b^2 = c^2 \rangle$.
Multidimensional minimal Various lamplighter groups

Elek-Monod construction

Ь
Ь
а
Ь
Ь
а
Ь
Ь
a

Multidimensional minimal Various lamplighter groups

Elek-Monod construction

b	b	b	b	b	b	b
b	b	b	b	b	b	b
а	а	а	а	а	а	а
b	b	b	b	b	b	b
b	b	b	b	b	b	b
а	а	а	а	а	а	а
b	b	b	b	b	b	b
b	b	b	b	b	b	b
а	а	а	а	а	а	а

Multidimensional minimal Various lamplighter groups

Elek-Monod construction

b a b	b a b	bab	b
ЪСЬ	ЬСЬ	ЬСЬ	b
a a	a a	a a	а
а	а	а	
ЬСЬ	ЬСЬ	ЬСЬ	b
b b	b b	b b	b
ааа	ааа	ааа	а
С	С	с	
b b	b b	b b	b
bab	bab	b a b	b
аса	аса	аса	а

Multidimensional minimal Various lamplighter groups

Elek-Monod construction

_	_	_		_			_	-		_			_			_
b	ć	9	b	b		5	а	Ь	b	a	1	b	Ł	,	b	
b	C	2	b	а		5	С	Ь	b	С		b	â	9	b	
а			а	b) å	а		а	а			а	Ŀ	,	а	
	ć	9		а	1		а			a	1		â	9		
b	C	2	b	С	· I	5	С	Ь	b	С		b	C	;	b	
b			b		l	5		Ь	b			b			b	
а	ć	a	а	b) ä	Э	а	а	а	a	1	а	Ŀ	,	а	
	C	2		а	1		С			С			â	9		
b			b	b		5	T	Ь	b			b	Ł	,	b	
b	ć	a	b	а		5	а	Ь	b	a	1	b	â	9	b	
а	6	2	а	С		а	с	а	а	С	•	а	C	;	а	

Multidimensional minimal Various lamplighter groups

Elek-Monod construction

	_											
							с					
b	a	b	Ь	b	а	b	а	b	а	b	b	b
b	С	b	а	b	с	b	b	b	с	b	а	b
а		а	Ь	а		а	с	а		а	b	а
	a		а		а		а		а		а	
b	С	b	с	b	с	b	b	b	с	b	с	b
b		b		b		b	а	b		b		b
а	a	а	Ь	а	а	а	b	а	а	а	b	а
	С		а		С		а		с		а	
b		b	b	b		b	С	b		b	b	b
b	а	b	а	b	а	b	b	b	а	b	а	b
а	С	а	с	а	с	а	а	а	с	а	с	а

Multidimensional minimal Various lamplighter groups

Sketch of the proof

Define $\sigma_a, \sigma_b, \sigma_c$ as in the 3-colouring example.

Multidimensional minimal Various lamplighter groups

Sketch of the proof

Define $\sigma_a, \sigma_b, \sigma_c$ as in the 3-colouring example. Claim: $\langle \sigma_a, \sigma_b, \sigma_c \rangle$ is free, and each σ_i is an involution.

Multidimensional minimal Various lamplighter groups

Sketch of the proof

Define $\sigma_a, \sigma_b, \sigma_c$ as in the 3-colouring example. Claim: $\langle \sigma_a, \sigma_b, \sigma_c \rangle$ is free, and each σ_i is an involution. Same strategy as for 3-colourings: find a configuration on which every $\tau \in \langle \sigma_a, \sigma_b, \sigma_c \rangle$ acts non-trivially.

Multidimensional minimal Various lamplighter groups

Sketch of the proof

Define $\sigma_a, \sigma_b, \sigma_c$ as in the 3-colouring example. Claim: $\langle \sigma_a, \sigma_b, \sigma_c \rangle$ is free, and each σ_i is an involution. Same strategy as for 3-colourings: find a configuration on which every $\tau \in \langle \sigma_a, \sigma_b, \sigma_c \rangle$ acts non-trivially. In fact, the shift σ already acts freely on X ! Indeed, all the configurations are aperiodic.

Multidimensional minimal Various lamplighter groups

Sketch of the proof

Define $\sigma_a, \sigma_b, \sigma_c$ as in the 3-colouring example. Claim: $\langle \sigma_a, \sigma_b, \sigma_c \rangle$ is free, and each σ_i is an involution. Same strategy as for 3-colourings: find a configuration on which every $\tau \in \langle \sigma_a, \sigma_b, \sigma_c \rangle$ acts non-trivially. In fact, the shift σ already acts freely on X ! Indeed, all the configurations are aperiodic. For $\tau = \sigma_{c_{n-1}} \dots \sigma_{c_0} \in \langle \sigma_a, \sigma_b, \sigma_c \rangle$, there exists a configuration $x \in X$

whose column $\{0\} \times \mathbb{N}$ is $(c_0 \dots c_{n-1} I)^{\infty}$, and $c_0 \neq I$ so $\tau(x) \neq x$.

Multidimensional minimal Various lamplighter groups

Similar results

We still have some similar results.

Multidimensional minimal Various lamplighter groups

Similar results

We still have some similar results. As for $\mathbb{Z}\text{-subshifts:}$

Theorem

Let X a minimal \mathbb{Z}^d subshift. Then,

• [X]' is finitely generated [CJN20]

Multidimensional minimal Various lamplighter groups

Similar results

We still have some similar results. As for $\mathbb{Z}\text{-subshifts:}$

Theorem

Let X a minimal \mathbb{Z}^d subshift. Then,

- $\llbracket X \rrbracket'$ is finitely generated [CJN20]
- [X]' is simple [Mat12]

Multidimensional minimal Various lamplighter groups

Similar results

We still have some similar results. As for $\mathbb{Z}\text{-subshifts:}$

Theorem

Let X a minimal \mathbb{Z}^d subshift. Then,

- $\llbracket X \rrbracket'$ is finitely generated [CJN20]
- [X]' is simple [Mat12]

The previous example show that we lose amenability in higher dimensions. Do we have something more ?

Multidimensional minimal Various lamplighter groups

Lamplighters

We define the *d*-dimensional lamplighter group as

$$\begin{split} \mathsf{L}_d &= \mathbb{Z}_2 \wr \mathbb{Z}^d \\ &= \left\langle \mathsf{a}, \mathsf{s}_1, \dots, \mathsf{s}_d \mid \mathsf{a}^2, (\mathsf{awaw}^{-1})^2 \text{ for all } \mathsf{w} \in \{\mathsf{s}_1, \dots, \mathsf{s}_d\}^*, \mathsf{s}_i \mathsf{s}_j \mathsf{s}_i^{-1} \mathsf{s}_j^{-1} \right\rangle \end{split}$$

Multidimensional minimal Various lamplighter groups

Lamplighters

We define the *d*-dimensional lamplighter group as

$$\begin{split} \mathsf{L}_d &= \mathbb{Z}_2 \wr \mathbb{Z}^d \\ &= \left\langle \mathsf{a}, \mathsf{s}_1, \dots, \mathsf{s}_d \mid \mathsf{a}^2, (\mathsf{awaw}^{-1})^2 \text{ for all } \mathsf{w} \in \{\mathsf{s}_1, \dots, \mathsf{s}_d\}^*, \mathsf{s}_i \mathsf{s}_j \mathsf{s}_i^{-1} \mathsf{s}_j^{-1} \right\rangle \end{split}$$

 L_d is best understood *via* its action on $\mathbb{Z}_2^{\mathbb{Z}^d}$:

Lamplighters

We define the *d*-dimensional lamplighter group as

$$\begin{split} \mathcal{L}_d &= \mathbb{Z}_2 \wr \mathbb{Z}^d \\ &= \left\langle \mathsf{a}, \mathsf{s}_1, \dots, \mathsf{s}_d \mid \mathsf{a}^2, (\mathsf{awaw}^{-1})^2 \text{ for all } \mathsf{w} \in \{\mathsf{s}_1, \dots, \mathsf{s}_d\}^*, \mathsf{s}_i \mathsf{s}_j \mathsf{s}_i^{-1} \mathsf{s}_j^{-1} \right\rangle \end{split}$$

 L_d is best understood *via* its action on $\mathbb{Z}_2^{\mathbb{Z}^d}$:

• $\mathbb{Z}_2^{\mathbb{Z}^d} \approx$ a $d\text{-dimensional grid with a "lamplighter" (on or off) at each position$

Lamplighters

We define the *d*-dimensional lamplighter group as

$$\begin{split} \mathcal{L}_d &= \mathbb{Z}_2 \wr \mathbb{Z}^d \\ &= \left\langle a, s_1, \dots, s_d \mid a^2, (awaw^{-1})^2 \text{ for all } w \in \{s_1, \dots, s_d\}^*, s_i s_j s_i^{-1} s_j^{-1} \right\rangle \end{split}$$

 L_d is best understood *via* its action on $\mathbb{Z}_2^{\mathbb{Z}^d}$:

- $\mathbb{Z}_2^{\mathbb{Z}^d} \approx$ a $d\text{-dimensional grid with a "lamplighter" (on or off) at each position$
- a toggles the "current" lamplighter (and so a^2 does nothing)

Lamplighters

We define the *d*-dimensional lamplighter group as

$$\begin{split} \mathcal{L}_d &= \mathbb{Z}_2 \wr \mathbb{Z}^d \\ &= \left\langle \mathsf{a}, \mathsf{s}_1, \dots, \mathsf{s}_d \mid \mathsf{a}^2, (\mathsf{awaw}^{-1})^2 \text{ for all } \mathsf{w} \in \{\mathsf{s}_1, \dots, \mathsf{s}_d\}^*, \mathsf{s}_i \mathsf{s}_j \mathsf{s}_i^{-1} \mathsf{s}_j^{-1} \right\rangle \end{split}$$

 L_d is best understood *via* its action on $\mathbb{Z}_2^{\mathbb{Z}^d}$:

- $\mathbb{Z}_2^{\mathbb{Z}^d} \approx$ a $d\text{-dimensional grid with a "lamplighter" (on or off) at each position$
- a toggles the "current" lamplighter (and so a^2 does nothing)
- For 0 ≤ i ≤ d, s_i move one step in direction e_i ∈ Z^d (so the s_i commute)

Multidimensional minimal Various lamplighter groups

Embed L_d in [X]?

Proposition ([BB22])

For any \mathbb{Z} -subshift X, $L_2 = \mathbb{Z}_2 \wr \mathbb{Z}^2 \not\leq \llbracket X \rrbracket$

Multidimensional minimal Various lamplighter groups

Embed L_d in [X]?

Proposition ([BB22])

For any \mathbb{Z} -subshift X, $L_2 = \mathbb{Z}_2 \wr \mathbb{Z}^2 \not\leq \llbracket X \rrbracket$

Proof idea: lower bound on the "growth rate" of faithful actions of L_2 . Intuitively, L_2 's faithful actions must have a quadratic growth rate, while X is a one-dimensional subshift.

Multidimensional minimal Various lamplighter groups

Embed L_d in [X]?

Proposition ([BB22])

For any \mathbb{Z} -subshift X, $L_2 = \mathbb{Z}_2 \wr \mathbb{Z}^2 \not\leq \llbracket X \rrbracket$

Proof idea: lower bound on the "growth rate" of faithful actions of L_2 . Intuitively, L_2 's faithful actions must have a quadratic growth rate, while X is a one-dimensional subshift.

This "dimension" obstruction does not hold for \mathbb{Z}^2 -subshift !

Multidimensional minimal Various lamplighter groups

Embed L_2 in $\llbracket X \rrbracket$ a bidimensional subshift

Take X the sunny-side-up: configurations on $\{\Box, \bigcup, \bigcup\}$ with at most one \bigcup .

Multidimensional minimal Various lamplighter groups

Embed L_2 in $\llbracket X \rrbracket$ a bidimensional subshift

Take X the sunny-side-up: configurations on $\{\Box, \blacksquare\}$ with at most one \blacksquare . Define three elements of [X]: σ_h, σ_v, τ .

Multidimensional minimal Various lamplighter groups

Embed L_2 in [X] a bidimensional subshift

Take X the sunny-side-up: configurations on $\{\Box, \blacksquare\}$ with at most one \blacksquare . Define three elements of [X]: σ_h, σ_v, τ .

 $\sigma_h = \sigma^{(2,0)}$ $\sigma_v = \sigma^{(0,1)}$

Multidimensional minimal Various lamplighter groups

Embed L_2 in $\llbracket X \rrbracket$ a bidimensional subshift

Take X the sunny-side-up: configurations on $\{\Box, \blacksquare\}$ with at most one \blacksquare . Define three elements of [X]: σ_h, σ_v, τ .

$$\begin{aligned} \sigma_h &= \sigma^{(2,0)} \\ \sigma_v &= \sigma^{(0,1)} \\ \tau &= x \mapsto \begin{cases} \sigma^{(1,0)}(x) & \text{if } x_{(0,0)} = \\ \sigma^{(-1,0)}(x) & \text{if } x_{(-1,0)} = \\ x & \text{otherwise} \end{cases} \end{aligned}$$

Multidimensional minimal Various lamplighter groups

Embed L_2 in $\llbracket X \rrbracket$ a bidimensional subshift

Take X the sunny-side-up: configurations on $\{\Box, \blacksquare\}$ with at most one \blacksquare . Define three elements of [X]: σ_h, σ_v, τ .

$$\sigma_{h} = \sigma^{(2,0)}$$

$$\sigma_{v} = \sigma^{(0,1)}$$

$$\tau = x \mapsto \begin{cases} \sigma^{(1,0)}(x) & \text{if } x_{(0,0)} = \\ \sigma^{(-1,0)}(x) & \text{if } x_{(-1,0)} = \\ x & \text{otherwise} \end{cases}$$

Idea: encode the state of the lamplighter in the "parity" of the \blacksquare . The action is clearly not free, but this is still enough to have $\langle \sigma_h, \sigma_v, \tau \rangle = L_2 \leq [\![X]\!]$

Multidimensional minimal Various lamplighter groups

Satisfies the lamplighter relations

Clearly, $\sigma_h \sigma_v = \sigma_v \sigma_h$, and $\tau^2 = i d_X$.

Multidimensional minimal Various lamplighter groups

Satisfies the lamplighter relations

Clearly, $\sigma_h \sigma_v = \sigma_v \sigma_h$, and $\tau^2 = id_X$.

Check on an example that it satisfies the relations $(\tau w \tau w^{-1})^2 = i d_X$, with $w = \sigma_V$: need to show that doing $\tau \sigma_V \tau \sigma_V^{-1}$ twice does nothing.

Multidimensional minimal Various lamplighter groups

Satisfies the lamplighter relations

Multidimensional minimal Various lamplighter groups

Satisfies the lamplighter relations

Clearly, $\sigma_h \sigma_v = \sigma_v \sigma_h$, and $\tau^2 = \mathrm{id}_X$. Check on an example that it satisfies the relations $(\tau w \tau w^{-1})^2 = \mathrm{id}_X$, with $w = \sigma_v$: need to show that doing $\tau \sigma_v \tau \sigma_v^{-1}$ twice does nothing.

 σ_v^{-1}

Multidimensional minimal Various lamplighter groups

Satisfies the lamplighter relations

Clearly, $\sigma_h \sigma_v = \sigma_v \sigma_h$, and $\tau^2 = \mathrm{id}_X$. Check on an example that it satisfies the relations $(\tau w \tau w^{-1})^2 = \mathrm{id}_X$, with $w = \sigma_v$: need to show that doing $\tau \sigma_v \tau \sigma_v^{-1}$ twice does nothing.

 $\tau \sigma_v^{-1}$

Multidimensional minimal Various lamplighter groups

Satisfies the lamplighter relations

$$\sigma_v \tau \sigma_v^{-1}$$

Multidimensional minimal Various lamplighter groups

Satisfies the lamplighter relations

$$\tau \sigma_v \tau \sigma_v^{-1}$$

Multidimensional minimal Various lamplighter groups

Satisfies the lamplighter relations

$$\sigma_v^{-1} \tau \sigma_v \tau \sigma_v^{-1}$$

Multidimensional minimal Various lamplighter groups

Satisfies the lamplighter relations

$$\tau \sigma_v^{-1} \tau \sigma_v \tau \sigma_v^{-1}$$

Multidimensional minimal Various lamplighter groups

Satisfies the lamplighter relations

Clearly, $\sigma_h \sigma_v = \sigma_v \sigma_h$, and $\tau^2 = \mathrm{id}_X$. Check on an example that it satisfies the relations $(\tau w \tau w^{-1})^2 = \mathrm{id}_X$, with $w = \sigma_v$: need to show that doing $\tau \sigma_v \tau \sigma_v^{-1}$ twice does nothing.

$$\sigma_{v} \tau \sigma_{v}^{-1} \tau \sigma_{v} \tau \sigma_{v}^{-1}$$

Multidimensional minimal Various lamplighter groups

Satisfies the lamplighter relations

Clearly, $\sigma_h \sigma_v = \sigma_v \sigma_h$, and $\tau^2 = \mathrm{id}_X$. Check on an example that it satisfies the relations $(\tau w \tau w^{-1})^2 = \mathrm{id}_X$, with $w = \sigma_v$: need to show that doing $\tau \sigma_v \tau \sigma_v^{-1}$ twice does nothing.

$$\tau \sigma_{v} \tau \sigma_{v}^{-1} \tau \sigma_{v} \tau \sigma_{v}^{-1}$$

Summary

Topological full groups [X] (and their derived subgroup) of tilings have some strong algebraic properties, in any dimension (simplicity, finitely generated).

Topological full groups [X] (and their derived subgroup) of tilings have some strong algebraic properties, in any dimension (simplicity, finitely generated).

Some of those algebraic properties heavily depend:

• On the *structure* of the subshift (minimal or not, recursive language and decidable word problem ...)

Topological full groups [X] (and their derived subgroup) of tilings have some strong algebraic properties, in any dimension (simplicity, finitely generated).

Some of those algebraic properties heavily depend:

- On the *structure* of the subshift (minimal or not, recursive language and decidable word problem ...)
- On the dimension (amenability, "growth rate")

Topological full groups [X] (and their derived subgroup) of tilings have some strong algebraic properties, in any dimension (simplicity, finitely generated).

Some of those algebraic properties heavily depend:

- On the *structure* of the subshift (minimal or not, recursive language and decidable word problem ...)
- On the dimension (amenability, "growth rate")

Some natural questions: how complex can TFGs of multidimensional SFT be (*e.g.* how hard are their word or torsion problems) ? Are there are other obstructions to embeddability than growth rates of group actions ?

Multidimensional minimal Various lamplighter groups

Bibliography I

- Adrien Le Boudec and Nicolás Matte Bon. Growth of actions of solvable groups. 2022.
- Maksym Chornyi, Kate Juschenko, and Volodymyr Nekrashevych. On topological full groups of F^d-actions. Groups, Geometry, and Dynamics, 14(1):61–79, 2020.
- Gábor Elek and Nicolas Monod.
 On the topological full group of a minimal cantor F²-system.
 Proceedings of the American Mathematical Society, 141(10):3549–3552, 2013.
- R. I. Grigorchuk and K. S. Medynets.
 On algebraic properties of topological full groups. Sbornik: Mathematics, 205(6):843–861, 2014.

Multidimensional minimal Various lamplighter groups

Bibliography II

Rostislav Grigorchuk and Kostya Medynets.

Presentations of topological full groups by generators and relations. *Journal of Algebra*, 500:46–68, 2018.

Kate Juschenko and Nicolas Monod.

Cantor systems, piecewise translations and simple amenable groups. *Annals of Mathematics*, 178(2):775–787, 2013.

Hiroki Matui.

Some remarks on topological full groups of cantor minimal systems. *International Journal of Mathematics*, 17(02):231–251, 2006.

Hiroki Matui.

Homology and topological full groups of étale groupoids on totally disconnected spaces.

Proceedings of the London Mathematical Society, 104(1):27–56, 2012.

Multidimensional minimal Various lamplighter groups

Projection, block map, factor

"Good" functions between two subshifts X and Y: block maps.

Multidimensional minimal Various lamplighter groups

Projection, block map, factor

Multidimensional minimal Various lamplighter groups

Projection, block map, factor

Multidimensional minimal Various lamplighter groups

Projection, block map, factor

Multidimensional minimal Various lamplighter groups

Projection, block map, factor

Multidimensional minimal Various lamplighter groups

Projection, block map, factor

Multidimensional minimal Various lamplighter groups

Projection, block map, factor

"Good" functions between two subshifts X and Y: block maps. They are exactly the continuous functions that commute with all the shift operators.

The subshifts are *conjugated* if *f* is reversible.

This is the "correct" isomorphism notion between subshifts (more generally, between dynamical systems).

Multidimensional minimal Various lamplighter groups

Projection, block map, factor

"Good" functions between two subshifts X and Y: block maps. They are exactly the continuous functions that commute with all the shift operators.

The subshifts are *conjugated* if f is reversible.

This is the "correct" isomorphism notion between subshifts (more generally, between dynamical systems).

"Properties" preserved by conjugacy are called *conjugacy invariants*

Multidimensional minimal Various lamplighter groups

Grigorchuk group

Another famous example of finitely generated (residually finite, torsion) group of intermediate growth: the (first) Grigorchuk group G

Multidimensional minimal Various lamplighter groups

Grigorchuk group

Another famous example of finitely generated (residually finite, torsion) group of intermediate growth: the (first) Grigorchuk group G Defined using an automaton (actually a transducer):

Multidimensional minimal Various lamplighter groups

Grigorchuk group

Another famous example of finitely generated (residually finite, torsion) group of intermediate growth: the (first) Grigorchuk group G Defined using an automaton (actually a transducer):

Notation p|q: when reading p, move to the correct state and output q.

Multidimensional minimal Various lamplighter groups

Grigorchuk group

Another famous example of finitely generated (residually finite, torsion) group of intermediate growth: the (first) Grigorchuk group G Defined using an automaton (actually a transducer):

Notation p|q: when reading p, move to the correct state and output q. Starting from state c and reading 1100 \implies end in state e, output 1101.

Multidimensional minimal Various lamplighter groups

Grigorchuk group

Another famous example of finitely generated (residually finite, torsion) group of intermediate growth: the (first) Grigorchuk group G Defined using an automaton (actually a transducer):

Notation p|q: when reading p, move to the correct state and output q. Starting from state c and reading 1100 \implies end in state e, output 1101. Each state induces an automorphism of $\{0,1\}^{\mathbb{N}}$, and $\mathcal{G} = \langle a, b, c, d \rangle$.

Multidimensional minimal Various lamplighter groups

Embed \mathcal{G} in some full group

Previous definition makes it clear that ${\cal G}$ acts on $\{0,1\}^{\mathbb N}$, and the graph of the action looks like this:

Multidimensional minimal Various lamplighter groups

Embed \mathcal{G} in some full group

Previous definition makes it clear that \mathcal{G} acts on $\{0,1\}^{\mathbb{N}}$, and the graph of the action looks like this:

Multidimensional minimal Various lamplighter groups

Embed \mathcal{G} in some full group

Previous definition makes it clear that \mathcal{G} acts on $\{0,1\}^{\mathbb{N}}$, and the graph of the action looks like this:

Lefmost point: $1111 \cdots \in \{0,1\}^{\mathbb{N}}$, then $011 \ldots \ldots$

More or less a linear shape: in fact, we can obtain it as a tiling of $\ensuremath{\mathbb{Z}}$ by the graphs

Multidimensional minimal Various lamplighter groups

Embed \mathcal{G} in some full group

Previous definition makes it clear that \mathcal{G} acts on $\{0,1\}^{\mathbb{N}}$, and the graph of the action looks like this:

Lefmost point: $1111 \cdots \in \{0,1\}^{\mathbb{N}}$, then $011 \ldots \ldots$

More or less a linear shape: in fact, we can obtain it as a tiling of $\ensuremath{\mathbb{Z}}$ by the graphs

Using the usual involutions σ_i which follow the edge $i \in \{a, b, c, d\}$ in both directions at the origin, we have $\mathcal{G} \in [X]$.

Léo Paviet Salomon