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Sofic subshifts: general definition

Sofic subshifts on Zd : letter-by-letter projections of SFTs (less formally,
SFT “up to some construction lines”).

Formally: Y ⊆ AZd

is a sofic subshift if there exists a SFT X ⊆ BZd

and
a map π : B → A so that

Y = {y : i ∈ Zd 7→ π(xi ), x ∈ X}

Example of the sunny-side up subshift on Z: subshift on {�,�}
containing at most one �
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Distinguishing the classes: extender sets

Problem: given an effective Zd -subshift X , determine whether it is sofic.

In dimension 1, Nerode theorem characterizes regular languages. Can we
adapt it to subshifts ?
Classical idea, the version presented here is with the formalism of French
and Pavlov, 2019 and Ormes and Pavlov, 2016. For a pattern w of a
subshift X :

Consider the extender set of w : EX (w) = {x , x t w ∈ X}.
Group them by size of w : EX (n) = |{EX (w), domain(w) = [n]d}|.

This quantifies how many classes of patterns can be freely exchanged in
any configuration: patterns are equivalent if they can appear in exactly
the same “contexts” in X .
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Example of extender sets

Question: for any fixed n, which patterns of length n can be freely
exchanged ?

F = {��n�, n ≥ 0} {��n�m�,m 6= n}
Class Sofic Effective
Extender sets Exactly 2 At least n + 1
Distinct sets {�n}, {�i��j , i + j + 1 = n} {�i�n−i}, 0 ≤ i ≤ n

Example: w = ��3 and w ′ = �2�2 cannot be freely exchanged.
Exhibit a configuration extending w , but not w ′:

w

∈ X∈ EX (w)

w ′

Forbidden

6∈ X
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A Nerode-like theorem

Theorem (Ormes and Pavlov, 2016)

If X is a Zd -subshift, and if there exists some n > 0 such that
EX (n) ≤ n, then X is sofic.

If d = 1, we even have (∃n,EX (n) ≤ n) ⇐⇒ EX bounded ⇐⇒ X sofic.

For F = {��n�m�,m 6= n}, we had EXF (n) > n for all n, so it defines
a non-sofic subshift.
Very slow growth rate of EX is sufficient to be sofic.
Goal: understand the possible behaviours of the function EX (for X sofic
or effective, on Z or Z2, etc).
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First definitions
Extender entropy

Extender entropy

Let X any subshift in any dimension d , over some alphabet A. We define
its extender entropy as

hE (X ) = lim
n→+∞

log EX (n)

nd
= inf

n→+∞

log EX (n)

nd

We have at most |A|nd different patterns of size n, so if we have about
2αn

d

“sets of exchangeable patterns”, then hE (X ) = α.

More informally: (up to some recoding of X as a binary subshift)
hE (X ) = α means that there is only 0 ≤ α ≤ 1 bit of information per cell.
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Subshifts and extender sets
Computability notions

Some results

Motivation
Computations with real numbers

Why do we care about computability ?

Chosen tool to study EX : computability theory.

Many “natural” problems on subshifts are undecidable (even on
SFTs, for example deciding if a Z2-SFT is empty)
Appears naturally in subshift classes: effective subshifts, sofic shifts.
Multiple recent results about characterization of subshift properties
use computability theory.

In our particular problem, what we really need is the notion of
computable real numbers.
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Subshifts and extender sets
Computability notions

Some results

Motivation
Computations with real numbers

An entire hierarchy of real numbers

Computing a real number ⇐⇒ approximate it by converging sequences.

Πn = infk1 supk2 infk3 . . . rk1,...,kn with n “operators”.
Example of a Π2 real number α:

n

R

α

All the “dots” are computed by a single algorithm.
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Subshifts and extender sets
Computability notions

Some results

One-dimensional effective subshifts
Two-dimensional sofic subshifts

Characterization: effective Z subshifts

We prove the following theorem:

Theorem (Callard, Vanier, P., 2023+)

The set of extender entropies of effective Z-subshifts is exactly the
non-negative Π3 real numbers.

“Easy” direction: hE (X ) = infn 〈something〉 is always a Π3 real number.
Other direction: we construct for any α ∈ Π3 an effective Z-subshift Xα,
with hE (Xα) = α.
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Subshifts and extender sets
Computability notions

Some results

One-dimensional effective subshifts
Two-dimensional sofic subshifts

Proof strategy: a quick overview

We want α = infn αn, and hE (Xα) = infn
log EXα (n)

nd

Natural idea: try to have αn =
log EXα (n)

nd
, that is, EXα(n) ∼ 2αnn

d

.
Simplest solution: have 2αnn

d

patterns, each one with a different extender
set. We separate extender sets using periodic configurations:

wPeriodDetermined by the rest of the configuration

If all the configurations of X are periodic, we can relate EX (n) to the
number of n-periodic configurations.
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Subshifts and extender sets
Computability notions

Some results

One-dimensional effective subshifts
Two-dimensional sofic subshifts

Proof strategies and tools: density

We need to have roughly 2αnn
d

patterns of size n to ensure hE (Xα) = α.

Binary layer on {�,�}, with the density of � approaching αn

On top of each {�}, we stack one of {�,�}

Only a proportion αn of the cells have “binary information”, each
information being binary: on average αn bits of information per cell.
Some difficulties (not answered in the talk):

If αn is not computable, how do we make sure that we have the
correct density ?
Arbitrarily large periods + compactness: X contains non-periodic
points, how do we deal with those ?

Léo Paviet Salomon Computability of extender sets in multidimensional subshifts 11/ 14



Subshifts and extender sets
Computability notions

Some results

One-dimensional effective subshifts
Two-dimensional sofic subshifts

Proof strategies and tools: density

We need to have roughly 2αnn
d

patterns of size n to ensure hE (Xα) = α.
Binary layer on {�,�}, with the density of � approaching αn

On top of each {�}, we stack one of {�,�}

Only a proportion αn of the cells have “binary information”, each
information being binary: on average αn bits of information per cell.
Some difficulties (not answered in the talk):

If αn is not computable, how do we make sure that we have the
correct density ?
Arbitrarily large periods + compactness: X contains non-periodic
points, how do we deal with those ?

Léo Paviet Salomon Computability of extender sets in multidimensional subshifts 11/ 14



Subshifts and extender sets
Computability notions

Some results

One-dimensional effective subshifts
Two-dimensional sofic subshifts

Proof strategies and tools: density

We need to have roughly 2αnn
d

patterns of size n to ensure hE (Xα) = α.
Binary layer on {�,�}, with the density of � approaching αn

On top of each {�}, we stack one of {�,�}

Only a proportion αn of the cells have “binary information”, each
information being binary: on average αn bits of information per cell.
Some difficulties (not answered in the talk):

If αn is not computable, how do we make sure that we have the
correct density ?
Arbitrarily large periods + compactness: X contains non-periodic
points, how do we deal with those ?

Léo Paviet Salomon Computability of extender sets in multidimensional subshifts 11/ 14



Subshifts and extender sets
Computability notions

Some results

One-dimensional effective subshifts
Two-dimensional sofic subshifts

Proof strategies and tools: density

We need to have roughly 2αnn
d

patterns of size n to ensure hE (Xα) = α.
Binary layer on {�,�}, with the density of � approaching αn

On top of each {�}, we stack one of {�,�}

Only a proportion αn of the cells have “binary information”, each
information being binary: on average αn bits of information per cell.
Some difficulties (not answered in the talk):

If αn is not computable, how do we make sure that we have the
correct density ?
Arbitrarily large periods + compactness: X contains non-periodic
points, how do we deal with those ?

Léo Paviet Salomon Computability of extender sets in multidimensional subshifts 11/ 14



Subshifts and extender sets
Computability notions

Some results

One-dimensional effective subshifts
Two-dimensional sofic subshifts

Proof strategies and tools: density

We need to have roughly 2αnn
d

patterns of size n to ensure hE (Xα) = α.
Binary layer on {�,�}, with the density of � approaching αn

On top of each {�}, we stack one of {�,�}

Only a proportion αn of the cells have “binary information”, each
information being binary: on average αn bits of information per cell.

Some difficulties (not answered in the talk):

If αn is not computable, how do we make sure that we have the
correct density ?
Arbitrarily large periods + compactness: X contains non-periodic
points, how do we deal with those ?

Léo Paviet Salomon Computability of extender sets in multidimensional subshifts 11/ 14



Subshifts and extender sets
Computability notions

Some results

One-dimensional effective subshifts
Two-dimensional sofic subshifts

Proof strategies and tools: density

We need to have roughly 2αnn
d

patterns of size n to ensure hE (Xα) = α.
Binary layer on {�,�}, with the density of � approaching αn

On top of each {�}, we stack one of {�,�}

Only a proportion αn of the cells have “binary information”, each
information being binary: on average αn bits of information per cell.
Some difficulties (not answered in the talk):

If αn is not computable, how do we make sure that we have the
correct density ?
Arbitrarily large periods + compactness: X contains non-periodic
points, how do we deal with those ?

Léo Paviet Salomon Computability of extender sets in multidimensional subshifts 11/ 14



Subshifts and extender sets
Computability notions

Some results

One-dimensional effective subshifts
Two-dimensional sofic subshifts

Proof strategies and tools: density

We need to have roughly 2αnn
d

patterns of size n to ensure hE (Xα) = α.
Binary layer on {�,�}, with the density of � approaching αn

On top of each {�}, we stack one of {�,�}

Only a proportion αn of the cells have “binary information”, each
information being binary: on average αn bits of information per cell.
Some difficulties (not answered in the talk):

If αn is not computable, how do we make sure that we have the
correct density ?

Arbitrarily large periods + compactness: X contains non-periodic
points, how do we deal with those ?

Léo Paviet Salomon Computability of extender sets in multidimensional subshifts 11/ 14



Subshifts and extender sets
Computability notions

Some results

One-dimensional effective subshifts
Two-dimensional sofic subshifts

Proof strategies and tools: density

We need to have roughly 2αnn
d

patterns of size n to ensure hE (Xα) = α.
Binary layer on {�,�}, with the density of � approaching αn

On top of each {�}, we stack one of {�,�}

Only a proportion αn of the cells have “binary information”, each
information being binary: on average αn bits of information per cell.
Some difficulties (not answered in the talk):

If αn is not computable, how do we make sure that we have the
correct density ?
Arbitrarily large periods + compactness: X contains non-periodic
points, how do we deal with those ?

Léo Paviet Salomon Computability of extender sets in multidimensional subshifts 11/ 14



Subshifts and extender sets
Computability notions

Some results

One-dimensional effective subshifts
Two-dimensional sofic subshifts

Characterization: sofic Z2 subshifts

Theorem (Callard, Vanier, P., 2023+)

The set of extender entropies of sofic Z2-subshifts is exactly the
non-negative Π3 real numbers.

The fact it not always 0 has already been remarked in Destombes and
Romashchenko, 2022 (setting: necessary conditions to be sofic in terms
of resource-bounded Kolmogorov complexity).
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Subshifts and extender sets
Computability notions

Some results

One-dimensional effective subshifts
Two-dimensional sofic subshifts

Generalize the one-dimensional proof ?

Mimicking the previous proof, we would like to do the following:

Pick n, get αn some density
Make a n × n square of the
correct density
Add “free bits”
Periodize !

Two problems:

This has no chance to be a sofic subshift.
Main tool to construct “complicated” Z2 uses effective Z subshift
with the right properties: we cannot really impose bidimensional
properties directly.
Idea: set the density using standard theorems (Aubrun-Sablik,
Durand-Romashchenko-Shen), and only have a single bit be periodic
rather than entire blocks.
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Computability notions

Some results

One-dimensional effective subshifts
Two-dimensional sofic subshifts

Summary

Extender entropies:

Z Zd≥2

SFT {0}
Sofic {0} Π3

Effective Π3

Computable Π2

Effective and minimal Π1

Effective and 1-Mixing/Block-Gluing Π3
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Deal with complex Z2 sofic

Define the lift z↑ of a Z-configuration z as the bidimensional
configuration y whose rows are all equal to z .

z

z↑

A very important theorem (used here as a “black-box”):

Theorem (Durand, Romashchenko and Shen, 2012, Aubrun and Sablik
2016)

Let Z an effective Z-subshift. Then, Z↑ is a sofic subshift on Z2.

Allows us to re-use the Z-effective construction for sofic Z2 subshifts.
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Deal with periods

Illustrate the fact that periodizing only one bit is sufficient: use a variant
of the mirror shift where only one bit is mirrored (idea of Destombes and
Romashchenko, 2022).

As before, different patterns
have different extender sets.
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