Subshifts and extender sets Computability notions

Some results

First definitions Extender entropy

Computability of extender sets in multidimensional subshifts

Antonin Callard, Léo Paviet Salomon, Pascal Vanier

GREYC Université Caen-Normandie

February 15, 2024

Léo Paviet Salomon

First definitions Extender entropy

First definitions Extender entropy

First definitions Extender entropy

Subshifts

Configuration $\iff \mathcal{A}$ -colouring of \mathbb{Z}^d with no forbidden pattern

First definitions Extender entropy

First definitions Extender entropy

First definitions Extender entropy

First definitions Extender entropy

First definitions Extender entropy

Subshifts

The set of all the valid configurations is called a **subshift**, denoted by X_F

First definitions Extender entropy

Subshifts

The set of all the valid configurations is called a **subshift**, denoted by X_F

Classes of subshifts: if ${\mathcal F}$ is ...

- finite: subshift of finite type
- regular (d=1): sofic
- recursively enumerable: effective

First definitions Extender entropy

Sofic subshifts: general definition

Sofic subshifts on \mathbb{Z}^d : letter-by-letter projections of SFTs (less formally, SFT "up to some construction lines").

Sofic subshifts on \mathbb{Z}^d : letter-by-letter projections of SFTs (less formally, SFT "up to some construction lines"). Formally: $Y \subseteq \mathcal{A}^{\mathbb{Z}^d}$ is a sofic subshift if there exists a SFT $X \subseteq \mathcal{B}^{\mathbb{Z}^d}$ and a map $\pi : \mathcal{B} \to \mathcal{A}$ so that

$$Y = \{y \colon i \in \mathbb{Z}^d \mapsto \pi(x_i), x \in X\}$$

Sofic subshifts on \mathbb{Z}^d : letter-by-letter projections of SFTs (less formally, SFT "up to some construction lines"). Formally: $Y \subseteq \mathcal{A}^{\mathbb{Z}^d}$ is a sofic subshift if there exists a SFT $X \subseteq \mathcal{B}^{\mathbb{Z}^d}$ and a map $\pi : \mathcal{B} \to \mathcal{A}$ so that

$$Y = \{y \colon i \in \mathbb{Z}^d \mapsto \pi(x_i), x \in X\}$$

Example of the sunny-side up subshift on \mathbb{Z} : subshift on $\{\Box, \blacksquare\}$ containing at most one \blacksquare

Sofic subshifts on \mathbb{Z}^d : letter-by-letter projections of SFTs (less formally, SFT "up to some construction lines"). Formally: $Y \subseteq \mathcal{A}^{\mathbb{Z}^d}$ is a sofic subshift if there exists a SFT $X \subseteq \mathcal{B}^{\mathbb{Z}^d}$ and

a map
$$\pi\colon \mathcal{B} o \mathcal{A}$$
 so that

$$Y = \{y \colon i \in \mathbb{Z}^d \mapsto \pi(x_i), x \in X\}$$

Example of the *sunny-side up* subshift on \mathbb{Z} : subshift on $\{\Box, \blacksquare\}$ containing at most one

Sofic subshifts on \mathbb{Z}^d : letter-by-letter projections of SFTs (less formally, SFT "up to some construction lines"). Formally: $Y \subseteq \mathcal{A}^{\mathbb{Z}^d}$ is a sofic subshift if there exists a SFT $X \subseteq \mathcal{B}^{\mathbb{Z}^d}$ and a map $\pi : \mathcal{B} \to \mathcal{A}$ so that

$$Y = \{y \colon i \in \mathbb{Z}^d \mapsto \pi(x_i), x \in X\}$$

Example of the sunny-side up subshift on \mathbb{Z} : subshift on $\{\Box, \blacksquare\}$ containing at most one \blacksquare

First definitions Extender entropy

Distinguishing the classes: extender sets

Problem: given an effective \mathbb{Z}^d -subshift X, determine whether it is sofic.

First definitions Extender entropy

Distinguishing the classes: extender sets

Problem: given an effective \mathbb{Z}^d -subshift X, determine whether it is sofic. In dimension 1, Nerode theorem characterizes regular *languages*. Can we adapt it to subshifts ?

Problem: given an effective \mathbb{Z}^d -subshift X, determine whether it is sofic. In dimension 1, Nerode theorem characterizes regular *languages*. Can we adapt it to subshifts ?

Classical idea, the version presented here is with the formalism of French and Pavlov, 2019 and Ormes and Pavlov, 2016. For a pattern w of a subshift X:

Problem: given an effective \mathbb{Z}^d -subshift X, determine whether it is sofic. In dimension 1, Nerode theorem characterizes regular *languages*. Can we adapt it to subshifts ?

Classical idea, the version presented here is with the formalism of French and Pavlov, 2019 and Ormes and Pavlov, 2016. For a pattern w of a subshift X:

• Consider the **extender set** of w: $E_X(w) = \{x, x \sqcup w \in X\}$.

Problem: given an effective \mathbb{Z}^d -subshift X, determine whether it is sofic. In dimension 1, Nerode theorem characterizes regular *languages*. Can we adapt it to subshifts ?

Classical idea, the version presented here is with the formalism of French and Pavlov, 2019 and Ormes and Pavlov, 2016. For a pattern w of a subshift X:

- Consider the **extender set** of w: $E_X(w) = \{x, x \sqcup w \in X\}$.
- Group them by size of w: $E_X(n) = |\{E_X(w), \operatorname{domain}(w) = [n]^d\}|.$

Problem: given an effective \mathbb{Z}^d -subshift X, determine whether it is sofic. In dimension 1, Nerode theorem characterizes regular *languages*. Can we adapt it to subshifts ?

Classical idea, the version presented here is with the formalism of French and Pavlov, 2019 and Ormes and Pavlov, 2016. For a pattern w of a subshift X:

• Consider the **extender set** of w: $E_X(w) = \{x, x \sqcup w \in X\}$.

• Group them by size of w: $E_X(n) = |\{E_X(w), \operatorname{domain}(w) = [n]^d\}|.$

This quantifies how many classes of patterns can be freely exchanged in **any** configuration: patterns are equivalent if they can appear in exactly the same "contexts" in X.

First definitions Extender entropy

Example of extender sets

Example of extender sets

$$\mathcal{F} = \{ \begin{array}{c} \square^n \square, n \ge 0 \} \\ Class \\ \end{array}$$
 Sofic

Example of extender sets

$$\begin{array}{c|c} \mathcal{F} = & \{ \blacksquare \square^n \blacksquare, n \ge 0 \} \\ \text{Class} & \text{Sofic} \\ \text{Extender sets} & \text{Exactly 2} \\ \text{Distinct sets} & \{ \square^n \}, \{ \square^j \blacksquare \square^j, i+j+1=n \} \end{array}$$

Example of extender sets

$$\begin{array}{c|c} \mathcal{F} = & \{ \blacksquare \square^n \blacksquare, n \ge 0 \} \\ \text{Class} & \text{Sofic} & \{ \blacksquare \square^m \square, m \ne n \} \\ \text{Extender sets} & \text{Exactly 2} \\ \text{Distinct sets} & \{ \square^n \}, \{ \square^j \blacksquare \square^j, i + j + 1 = n \} \end{array}$$

Example of extender sets

$$\begin{array}{c|c} \mathcal{F} = & \{ \blacksquare \square^n \blacksquare, n \ge 0 \} \\ \text{Class} \\ \text{Extender sets} \\ \text{Distinct sets} \\ \end{bmatrix} \begin{cases} \blacksquare \square^n \blacksquare, n \ge 0 \} \\ \text{Sofic} \\ \{ \square^n \}, \{ \square^i \blacksquare \square^j, i+j+1=n \} \\ \{ \square^i \blacksquare^{n-i} \}, 0 \le i \le n \end{cases}$$

Example of extender sets

Question: for any fixed n, which patterns of length n can be freely exchanged ?

$$\begin{array}{c|c} \mathcal{F} = & \{ \blacksquare \square^n _, n \ge 0 \} \\ \text{Class} \\ \text{Extender sets} \\ \text{Distinct sets} \\ \end{bmatrix} \begin{array}{c} \{ \blacksquare^n \blacksquare, n \ge 0 \} \\ \text{Sofic} \\ \text{Exactly 2} \\ \{ \square^n \}, \{ \square^i \blacksquare \square^j, i+j+1=n \} \\ \end{bmatrix} \begin{array}{c} \{ \square^m \blacksquare^m \square, m \ne n \} \\ \text{Effective} \\ \text{At least } n+1 \\ \{ \square^i \blacksquare^{n-i} \}, 0 \le i \le n \end{array}$$

Example: $w = \Box \blacksquare^3$ and $w' = \Box^2 \blacksquare^2$ cannot be freely exchanged.

Example of extender sets

Question: for any fixed n, which patterns of length n can be freely exchanged ?

$$\begin{array}{c|c} \mathcal{F} = & \{ \blacksquare \square^n _, n \ge 0 \} \\ \text{Class} & \text{Sofic} \\ \text{Extender sets} & \text{Exactly 2} \\ \text{Distinct sets} & \{ \square^n \}, \{ \square^i \blacksquare \square^j, i+j+1=n \} & \{ \square^i \blacksquare^{n-i} \}, 0 \le i \le n \\ \end{array}$$

Example of extender sets

Question: for any fixed n, which patterns of length n can be freely exchanged ?

$$\begin{array}{c|c} \mathcal{F} = & \{ \fbox{\mbox{\square}\ \square}^n, n \ge 0 \} \\ Class & Sofic & Effective \\ Extender sets & Exactly 2 & At least $n+1 \\ 0 & \text{[}\square^n \}, \{ \fbox{\mbox{\square}\ \square}^j, i+j+1=n \} & \{ \fbox{\mbox{\square}\ \square}^{n-i} \}, 0 \le i \le n \\ \end{array}$$$

Example of extender sets

Question: for any fixed n, which patterns of length n can be freely exchanged ?

$$\begin{array}{c|c} \mathcal{F} = & \{ \blacksquare \square^n _, n \ge 0 \} \\ \text{Class} \\ \text{Extender sets} \\ \text{Distinct sets} \\ \end{bmatrix} \begin{cases} \blacksquare \square^n _, n \ge 0 \} \\ \text{Sofic} \\ \{ \square^n \}, \{ \square^j \blacksquare \square^j, i+j+1=n \} \\ \{ \square^i \blacksquare^{n-i} \}, 0 \le i \le n \end{cases}$$

Example of extender sets

Question: for any fixed n, which patterns of length n can be freely exchanged ?

$$\begin{array}{c|c} \mathcal{F} = & \{ \blacksquare \square^n _, n \ge 0 \} \\ \text{Class} & \text{Sofic} \\ \text{Extender sets} & \text{Exactly 2} \\ \text{Distinct sets} & \{ \square^n \}, \{ \square^i \blacksquare \square^j, i+j+1=n \} & \{ \square^i \blacksquare^{n-i} \}, 0 \le i \le n \\ \end{array}$$

First definitions Extender entropy

A Nerode-like theorem

Theorem (Ormes and Pavlov, 2016)

If X is a \mathbb{Z}^d -subshift, and if there exists some n > 0 such that $E_X(n) \le n$, then X is sofic.

First definitions Extender entropy

A Nerode-like theorem

Theorem (Ormes and Pavlov, 2016)

If X is a \mathbb{Z}^d -subshift, and if there exists some n > 0 such that $E_X(n) \le n$, then X is sofic. If d = 1, we even have $(\exists n, E_X(n) \le n) \iff E_X$ bounded $\iff X$ sofic.

First definitions Extender entropy

A Nerode-like theorem

Theorem (Ormes and Pavlov, 2016)

If X is a \mathbb{Z}^d -subshift, and if there exists some n > 0 such that $E_X(n) \le n$, then X is sofic. If d = 1, we even have $(\exists n, E_X(n) \le n) \iff E_X$ bounded $\iff X$ sofic.

For $\mathcal{F} = \{ \Box \blacksquare^n \blacksquare^m \Box, m \neq n \}$, we had $E_{X_{\mathcal{F}}}(n) > n$ for all n, so it defines a non-sofic subshift.

First definitions Extender entropy

A Nerode-like theorem

Theorem (Ormes and Pavlov, 2016)

If X is a \mathbb{Z}^d -subshift, and if there exists some n > 0 such that $E_X(n) \le n$, then X is sofic. If d = 1, we even have $(\exists n, E_X(n) \le n) \iff E_X$ bounded $\iff X$ sofic.

For $\mathcal{F} = \{ \Box \blacksquare^n \blacksquare^m \Box, m \neq n \}$, we had $E_{X_{\mathcal{F}}}(n) > n$ for all n, so it defines a non-sofic subshift.

Very slow growth rate of E_X is sufficient to be sofic.

First definitions Extender entropy

A Nerode-like theorem

Theorem (Ormes and Pavlov, 2016)

If X is a \mathbb{Z}^d -subshift, and if there exists some n > 0 such that $E_X(n) \le n$, then X is sofic. If d = 1, we even have $(\exists n, E_X(n) \le n) \iff E_X$ bounded $\iff X$ sofic.

For $\mathcal{F} = \{ \Box \blacksquare^n \blacksquare^m \Box, m \neq n \}$, we had $E_{X_{\mathcal{F}}}(n) > n$ for all n, so it defines a non-sofic subshift.

Very slow growth rate of E_X is sufficient to be sofic.

Goal: understand the possible behaviours of the function E_X (for X sofic or effective, on \mathbb{Z} or \mathbb{Z}^2 , etc).
Extender entropy

Let X any subshift in any dimension d, over some alphabet A. We define its **extender entropy** as

$$h_E(X) = \lim_{n \to +\infty} \frac{\log E_X(n)}{n^d} = \inf_{n \to +\infty} \frac{\log E_X(n)}{n^d}$$

Extender entropy

Let X any subshift in any dimension d, over some alphabet A. We define its **extender entropy** as

$$h_E(X) = \lim_{n \to +\infty} \frac{\log E_X(n)}{n^d} = \inf_{n \to +\infty} \frac{\log E_X(n)}{n^d}$$

We have at most $|\mathcal{A}|^{n^d}$ different patterns of size *n*, so if we have about $2^{\alpha n^d}$ "sets of exchangeable patterns", then $h_E(X) = \alpha$.

Extender entropy

Let X any subshift in any dimension d, over some alphabet A. We define its **extender entropy** as

$$h_E(X) = \lim_{n \to +\infty} \frac{\log E_X(n)}{n^d} = \inf_{n \to +\infty} \frac{\log E_X(n)}{n^d}$$

We have at most $|\mathcal{A}|^{n^d}$ different patterns of size *n*, so if we have about $2^{\alpha n^d}$ "sets of exchangeable patterns", then $h_E(X) = \alpha$.

More informally: (up to some recoding of X as a binary subshift) $h_E(X) = \alpha$ means that there is only $0 \le \alpha \le 1$ bit of information per cell. Subshifts and extender sets Computability notions Some results

Motivation Computations with real numbers

Why do we care about computability ?

Chosen tool to study E_X : computability theory.

Why do we care about computability ?

Chosen tool to study E_X : computability theory.

- Many "natural" problems on subshifts are undecidable (even on SFTs, for example deciding if a Z²-SFT is empty)
- Appears naturally in subshift classes: effective subshifts, sofic shifts.
- Multiple recent results about characterization of subshift properties use computability theory.

Why do we care about computability ?

Chosen tool to study E_X : computability theory.

- Many "natural" problems on subshifts are undecidable (even on SFTs, for example deciding if a Z²-SFT is empty)
- Appears naturally in subshift classes: effective subshifts, sofic shifts.
- Multiple recent results about characterization of subshift properties use computability theory.

In our particular problem, what we really need is the notion of **computable real numbers**.

Motivation Computations with real numbers

An entire hierarchy of real numbers

Computing a real number \iff approximate it by converging sequences.

Motivation Computations with real numbers

An entire hierarchy of real numbers

Computing a real number \iff approximate it by converging sequences. $\Pi_n = \inf_{k_1} \sup_{k_2} \inf_{k_3} \dots r_{k_1,\dots,k_n}$ with *n* "operators".

Motivation Computations with real numbers

An entire hierarchy of real numbers

Computing a real number \iff approximate it by converging sequences. $\Pi_n = \inf_{k_1} \sup_{k_2} \inf_{k_3} \dots r_{k_1,\dots,k_n}$ with *n* "operators". Example of a Π_2 real number α :

Computing a real number \iff approximate it by converging sequences. $\Pi_n = \inf_{k_1} \sup_{k_2} \inf_{k_3} \dots r_{k_1,\dots,k_n}$ with *n* "operators". Example of a Π_2 real number α :

Computing a real number \iff approximate it by converging sequences. $\Pi_n = \inf_{k_1} \sup_{k_2} \inf_{k_3} \dots r_{k_1,\dots,k_n}$ with *n* "operators". Example of a Π_2 real number α :

Computing a real number \iff approximate it by converging sequences. $\Pi_n = \inf_{k_1} \sup_{k_2} \inf_{k_3} \dots r_{k_1,\dots,k_n}$ with *n* "operators". Example of a Π_2 real number α :

Computing a real number \iff approximate it by converging sequences. $\Pi_n = \inf_{k_1} \sup_{k_2} \inf_{k_3} \dots r_{k_1,\dots,k_n}$ with *n* "operators". Example of a Π_2 real number α :

Characterization: effective \mathbb{Z} subshifts

We prove the following theorem:

Theorem (Callard, Vanier, P., 2023+)

The set of extender entropies of effective \mathbb{Z} -subshifts is exactly the non-negative Π_3 real numbers.

Characterization: effective \mathbb{Z} subshifts

We prove the following theorem:

Theorem (Callard, Vanier, P., 2023+)

The set of extender entropies of effective \mathbb{Z} -subshifts is exactly the non-negative Π_3 real numbers.

"Easy" direction: $h_E(X) = \inf_n \langle \text{something} \rangle$ is always a Π_3 real number.

Characterization: effective \mathbb{Z} subshifts

We prove the following theorem:

Theorem (Callard, Vanier, P., 2023+)

The set of extender entropies of effective \mathbb{Z} -subshifts is exactly the non-negative Π_3 real numbers.

"Easy" direction: $h_E(X) = \inf_n \langle \text{something} \rangle$ is always a Π_3 real number. Other direction: we construct for any $\alpha \in \Pi_3$ an effective \mathbb{Z} -subshift X_{α} , with $h_E(X_{\alpha}) = \alpha$. Subshifts and extender sets Computability notions Some results

One-dimensional effective subshifts Two-dimensional sofic subshifts

Proof strategy: a quick overview

We want
$$\alpha = \inf_n \alpha_n$$
, and $h_E(X_\alpha) = \inf_n \frac{\log E_{X_\alpha}(n)}{n^d}$

We want $\alpha = \inf_n \alpha_n$, and $h_E(X_\alpha) = \inf_n \frac{\log E_{X_\alpha}(n)}{n^d}$ Natural idea: try to have $\alpha_n = \frac{\log E_{X_\alpha}(n)}{n^d}$, that is, $E_{X_\alpha}(n) \sim 2^{\alpha_n n^d}$.

We want $\alpha = \inf_{n} \alpha_{n}$, and $h_{E}(X_{\alpha}) = \inf_{n} \frac{\log E_{X_{\alpha}}(n)}{n^{d}}$ Natural idea: try to have $\alpha_{n} = \frac{\log E_{X_{\alpha}}(n)}{n^{d}}$, that is, $E_{X_{\alpha}}(n) \sim 2^{\alpha_{n}n^{d}}$. Simplest solution: have $2^{\alpha_{n}n^{d}}$ patterns, each one with a different extender set. We separate extender sets using periodic configurations:

Determined by the rest of the configuration

We want $\alpha = \inf_{n} \alpha_{n}$, and $h_{E}(X_{\alpha}) = \inf_{n} \frac{\log E_{X_{\alpha}}(n)}{n^{d}}$ Natural idea: try to have $\alpha_{n} = \frac{\log E_{X_{\alpha}}(n)}{n^{d}}$, that is, $E_{X_{\alpha}}(n) \sim 2^{\alpha_{n}n^{d}}$. Simplest solution: have $2^{\alpha_{n}n^{d}}$ patterns, each one with a different extender set. We separate extender sets using periodic configurations:

Determined by the rest of the configuration

If all the configurations of X are periodic, we can relate $E_X(n)$ to the number of *n*-periodic configurations.

Subshifts and extender sets Computability notions Some results

One-dimensional effective subshifts Two-dimensional sofic subshifts

Proof strategies and tools: density

We need to have roughly $2^{\alpha_n n^d}$ patterns of size *n* to ensure $h_E(X_\alpha) = \alpha$.

We need to have roughly $2^{\alpha_n n^d}$ patterns of size *n* to ensure $h_E(X_\alpha) = \alpha$.

Binary layer on {□, ■}, with the density of ■ approaching α_n

We need to have roughly $2^{\alpha_n n^d}$ patterns of size *n* to ensure $h_E(X_\alpha) = \alpha$.

- Binary layer on {□, ■}, with the density of approaching α_n
- On top of each {■}, we stack one of {■, ■}

We need to have roughly $2^{\alpha_n n^d}$ patterns of size *n* to ensure $h_E(X_\alpha) = \alpha$.

- Binary layer on $\{\Box, \blacksquare\}$, with the density of \blacksquare approaching α_n
- On top of each {■}, we stack one of {■, ■}

We need to have roughly $2^{\alpha_n n^d}$ patterns of size *n* to ensure $h_E(X_\alpha) = \alpha$.

- Binary layer on $\{\Box, \blacksquare\}$, with the density of \blacksquare approaching α_n
- On top of each {■}, we stack one of {■, ■}

Only a proportion α_n of the cells have "binary information", each information being binary: on average α_n bits of information per cell.

We need to have roughly $2^{\alpha_n n^d}$ patterns of size *n* to ensure $h_E(X_\alpha) = \alpha$.

- Binary layer on $\{\Box, \blacksquare\}$, with the density of \blacksquare approaching α_n
- On top of each {■}, we stack one of {■, ■}

Only a proportion α_n of the cells have "binary information", each information being binary: on average α_n bits of information per cell. Some difficulties (not answered in the talk):

We need to have roughly $2^{\alpha_n n^d}$ patterns of size *n* to ensure $h_E(X_\alpha) = \alpha$.

- Binary layer on $\{\Box, \blacksquare\}$, with the density of \blacksquare approaching α_n
- On top of each {■}, we stack one of {■, ■}

Only a proportion α_n of the cells have "binary information", each information being binary: on average α_n bits of information per cell. Some difficulties (not answered in the talk):

• If α_n is not computable, how do we make sure that we have the correct density ?

We need to have roughly $2^{\alpha_n n^d}$ patterns of size *n* to ensure $h_E(X_\alpha) = \alpha$.

- Binary layer on $\{\Box, \blacksquare\}$, with the density of \blacksquare approaching α_n
- On top of each {■}, we stack one of {■, ■}

Only a proportion α_n of the cells have "binary information", each information being binary: on average α_n bits of information per cell. Some difficulties (not answered in the talk):

- If α_n is not computable, how do we make sure that we have the correct density ?
- Arbitrarily large periods + compactness: X contains non-periodic points, how do we deal with those ?

Subshifts and extender sets Computability notions Some results

One-dimensional effective subshifts Two-dimensional sofic subshifts

Characterization: sofic \mathbb{Z}^2 subshifts

Theorem (Callard, Vanier, P., 2023+)

The set of extender entropies of sofic \mathbb{Z}^2 -subshifts is exactly the non-negative Π_3 real numbers.

Subshifts and extender sets Computability notions Some results

One-dimensional effective subshifts Two-dimensional sofic subshifts

Characterization: sofic \mathbb{Z}^2 subshifts

Theorem (Callard, Vanier, P., 2023+)

The set of extender entropies of sofic \mathbb{Z}^2 -subshifts is exactly the non-negative Π_3 real numbers.

The fact it not always 0 has already been remarked in Destombes and Romashchenko, 2022 (setting: necessary conditions to be sofic in terms of resource-bounded Kolmogorov complexity).

Generalize the one-dimensional proof ?

Mimicking the previous proof, we would like to do the following:
Generalize the one-dimensional proof ?

Mimicking the previous proof, we would like to do the following:

• Pick *n*, get α_n some density

Generalize the one-dimensional proof ?

Mimicking the previous proof, we would like to do the following:

- Pick *n*, get α_n some density
- Make a *n* × *n* square of the correct density

Generalize the one-dimensional proof ?

Mimicking the previous proof, we would like to do the following:

- Pick *n*, get α_n some density
- Make a *n* × *n* square of the correct density

Add "free bits"

Generalize the one-dimensional proof ?

Mimicking the previous proof, we would like to do the following:

- Pick *n*, get α_n some density
- Make a *n* × *n* square of the correct density
- Add "free bits"
- Periodize !

Generalize the one-dimensional proof ?

Mimicking the previous proof, we would like to do the following:

- Pick *n*, get α_n some density
- Make a *n* × *n* square of the correct density
- Add "free bits"
- Periodize !

Two problems:

Generalize the one-dimensional proof ?

Mimicking the previous proof, we would like to do the following:

- Pick *n*, get α_n some density
- Make a *n* × *n* square of the correct density
- Add "free bits"
- Periodize !

Two problems:

• This has no chance to be a sofic subshift.

Generalize the one-dimensional proof ?

Mimicking the previous proof, we would like to do the following:

- Pick *n*, get α_n some density
- Make a *n* × *n* square of the correct density
- Add "free bits"
- Periodize !

Two problems:

- This has no chance to be a sofic subshift.
- Main tool to construct "complicated" \mathbb{Z}^2 uses effective \mathbb{Z} subshift with the right properties: we cannot really impose *bi*dimensional properties directly.

Generalize the one-dimensional proof ?

Mimicking the previous proof, we would like to do the following:

- Pick *n*, get α_n some density
- Make a *n* × *n* square of the correct density
- Add "free bits"
- Periodize !

Two problems:

- This has no chance to be a sofic subshift.
- Main tool to construct "complicated" \mathbb{Z}^2 uses effective \mathbb{Z} subshift with the right properties: we cannot really impose *bi*dimensional properties directly.
- Idea: set the density using standard theorems (Aubrun-Sablik, Durand-Romashchenko-Shen), and only have a single bit be periodic rather than entire blocks.

One-dimensional effective subshifts Two-dimensional sofic subshifts

Summary

Extender entropies:

	\mathbb{Z}	$\mathbb{Z}^{d\geq 2}$	
SFT	{0}		
Sofic	{0}	П ₃	
Effective	Π ₃		
Computable	Π_2		
Effective and minimal	Π_1		
Effective and 1-Mixing/Block-Gluing	П	3	

One-dimensional effective subshifts Two-dimensional sofic subshifts

Deal with complex \mathbb{Z}^2 sofic

Define the **lift** z^{\uparrow} of a \mathbb{Z} -configuration z as the bidimensional configuration y whose rows are all equal to z.

One-dimensional effective subshifts Two-dimensional sofic subshifts

Deal with complex \mathbb{Z}^2 sofic

Define the **lift** z^{\uparrow} of a \mathbb{Z} -configuration z as the bidimensional configuration y whose rows are all equal to z.

One-dimensional effective subshifts Two-dimensional sofic subshifts

Deal with complex \mathbb{Z}^2 sofic

Define the **lift** z^{\uparrow} of a \mathbb{Z} -configuration z as the bidimensional configuration y whose rows are all equal to z.

A very important theorem (used here as a "black-box"):

Theorem (Durand, Romashchenko and Shen, 2012, Aubrun and Sablik 2016)

Let Z an effective \mathbb{Z} -subshift. Then, Z^{\uparrow} is a sofic subshift on \mathbb{Z}^2 .

One-dimensional effective subshifts Two-dimensional sofic subshifts

Deal with complex \mathbb{Z}^2 sofic

Define the **lift** z^{\uparrow} of a \mathbb{Z} -configuration z as the bidimensional configuration y whose rows are all equal to z.

A very important theorem (used here as a "black-box"):

Theorem (Durand, Romashchenko and Shen, 2012, Aubrun and Sablik 2016)

Let Z an effective \mathbb{Z} -subshift. Then, Z^{\uparrow} is a sofic subshift on \mathbb{Z}^2 .

Allows us to re-use the $\mathbb{Z}\text{-effective construction for sofic }\mathbb{Z}^2$ subshifts.

Léo Paviet Salomon

Computability of extender sets in multidimensional subshifts

Deal with periods

Illustrate the fact that periodizing only one bit is sufficient: use a variant of the mirror shift where only *one* bit is mirrored (idea of Destombes and Romashchenko, 2022).

Deal with periods

Illustrate the fact that periodizing only one bit is sufficient: use a variant of the mirror shift where only *one* bit is mirrored (idea of Destombes and Romashchenko, 2022).

One-dimensional effective subshifts Two-dimensional sofic subshifts

Deal with periods

Illustrate the fact that periodizing only one bit is sufficient: use a variant of the mirror shift where only *one* bit is mirrored (idea of Destombes and Romashchenko, 2022).

As before, different patterns have different extender sets.

One-dimensional effective subshifts Two-dimensional sofic subshifts

Deal with periods

Illustrate the fact that periodizing only one bit is sufficient: use a variant of the mirror shift where only *one* bit is mirrored (idea of Destombes and Romashchenko, 2022).

As before, different patterns have different extender sets.

	_			_	
				\bigcirc	

One-dimensional effective subshifts Two-dimensional sofic subshifts

Deal with periods

Illustrate the fact that periodizing only one bit is sufficient: use a variant of the mirror shift where only *one* bit is mirrored (idea of Destombes and Romashchenko, 2022).

As before, different patterns have different extender sets.

One-dimensional effective subshifts Two-dimensional sofic subshifts

Bibliography I

Aubrun, N. and Sablik, M. (2013). Simulation of effective subshifts by two-dimensional subshifts of finite type. Acta applicandae mathematicae, 126:35–63. Destombes, J. and Romashchenko, A. (2022). Resource-bounded kolmogorov complexity provides an obstacle to soficness of multidimensional shifts. Journal of Computer and System Sciences, 128:107–134. Durand, B., Romashchenko, A., and Shen, A. (2012). Fixed-point tile sets and their applications. Journal of Computer and System Sciences, 78(3):731–764. French, T. and Pavlov, R. (2019).

Follower, predecessor, and extender entropies. Monatshefte für Mathematik, 188:495–510.

One-dimensional effective subshifts Two-dimensional sofic subshifts

Bibliography II

Ormes, N. and Pavlov, R. (2016).
Extender sets and multidimensional subshifts.
Ergodic Theory and Dynamical Systems, 36(3):908–923.