Indécidabilité des invariants géométriques dans les pavages

Léo Paviet Salomon, sous la direction de Pascal Vanier

GREYC Université de Caen-Normandie

17 Décembre 2024

Plan

Contexte et premières définitions

② Groupe fondamental projectif

3 Entropie d'extension

Contexte et premières définitions

Premières intuitions

Pavages : formalisation possible de "règles d'assemblage":

- Locales
- Homogènes

Cas le plus courant : assemblage disposé selon une ligne ou une grille.

Définition

Alphabet : ensemble fini de symboles

$$\mathcal{A} = \{ \blacksquare, \blacksquare \}$$

Un ensemble \mathcal{F} de motifs (finis) interdits :

Définition

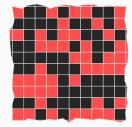
Alphabet : ensemble fini de symboles

$$\mathcal{A} = \{ \blacksquare, \blacksquare \}$$

Un ensemble \mathcal{F} de motifs (finis) interdits :

$$\mathcal{F} = \emptyset$$

Configuration: A-coloriage de \mathbb{Z}^d sans motif interdit



Définition

Alphabet : ensemble fini de symboles

$$\mathcal{A} = \{ \blacksquare, \blacksquare \}$$

Un ensemble ${\cal F}$ de motifs (finis) interdits :

$$\mathcal{F} = \{ \blacksquare, \blacksquare \}$$

Configuration: \mathcal{A} -coloriage de \mathbb{Z}^d sans motif interdit

Définition

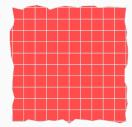
Alphabet : ensemble fini de symboles

$$\mathcal{A} = \{ \blacksquare, \blacksquare \}$$

Un ensemble \mathcal{F} de motifs (finis) interdits :

$$\mathcal{F} = \{ \blacksquare, \blacksquare \}$$

Configuration: A-coloriage de \mathbb{Z}^d sans motif interdit



Définition

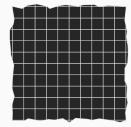
Alphabet : ensemble fini de symboles

$$\mathcal{A} = \{ \blacksquare, \blacksquare \}$$

Un ensemble \mathcal{F} de motifs (finis) interdits :

$$\mathcal{F} = \{ \blacksquare, \blacksquare \blacksquare \}$$

Configuration: \mathcal{A} -coloriage de \mathbb{Z}^d sans motif interdit



Définition

Alphabet : ensemble fini de symboles

$$\mathcal{A} = \{ \blacksquare, \blacksquare \}$$

Un ensemble ${\cal F}$ de motifs (finis) interdits :

$$\mathcal{F} = \{ \blacksquare, \blacksquare \}$$

Configuration: \mathcal{A} -coloriage de \mathbb{Z}^d sans motif interdit

Définition

Alphabet : ensemble fini de symboles

$$\mathcal{A} = \{ \blacksquare, \blacksquare \}$$

Un ensemble ${\cal F}$ de motifs (finis) interdits :

$$\mathcal{F} = \{ \blacksquare, \blacksquare \blacksquare \}$$

Sous-shift $X_{\mathcal{F}}$: l'ensemble des configurations valides.

Configuration: A-coloriage de \mathbb{Z}^d sans motif interdit

Définition

Alphabet : ensemble fini de symboles

$$\mathcal{A} = \{ \blacksquare, \blacksquare \}$$

Un ensemble \mathcal{F} de motifs (finis) interdits :

$$\mathcal{F} = \{ \blacksquare, \blacksquare \blacksquare \}$$

Sous-shift $X_{\mathcal{F}}$: l'ensemble des configurations valides.

Configuration: \mathcal{A} -coloriage de \mathbb{Z}^d sans motif interdit

Pour \mathcal{F} ...

- Fini : Sous-shift de Type Fini
- Énumérable : effectif

Sous-shifts et complexités

Objet élémentaire, mais riche :

- Systèmes dynamiques
- Questions algorithmiques : compter les motifs, les générer efficacement
- Questions géométriques : \mathbb{R}^d , espaces plus complexes (surfaces branchées, groupes hyperboliques ...)

Sous-shifts et complexités

Objet élémentaire, mais riche :

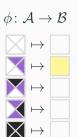
- Systèmes dynamiques
- Questions algorithmiques : compter les motifs, les générer efficacement
- Questions géométriques : \mathbb{R}^d , espaces plus complexes (surfaces branchées, groupes hyperboliques ...)

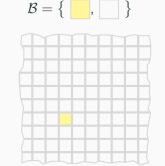
Question

À quel point peut-on construire des pavages "complexes" ?

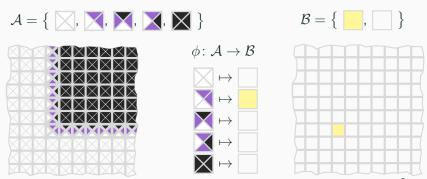
Facteurs et conjugaisons

Facteurs et conjugaisons





Facteurs et conjugaisons



Factorisation $\Phi: X \to Y = \text{application de } \phi \text{ en tout point de } \mathbb{Z}^2.$ Cas particulier : facteur d'un SFT = sofique.

S'il existe un facteur inverse, X, Y sont dits **conjugués**.

ightarrow On s'intéresse aux quantités **invariantes** par conjugaison.

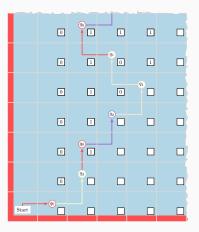
Pavages et indécidabilité

Diagrammes espace-temps d'une machine de Turing $M \to \mathsf{SFT}\ X_M$.



Pavages et indécidabilité

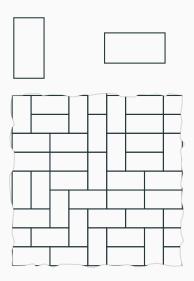
Diagrammes espace-temps d'une machine de Turing $M \to \mathsf{SFT}\ X_M$.



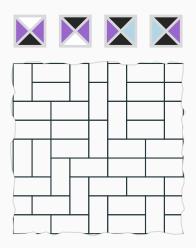
Théorème informel : $X_M = \emptyset$ si et seulement si M s'arrête.

Groupe fondamental projectif

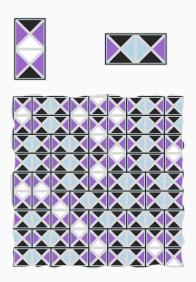
Premier exemple : le modèle des dimères

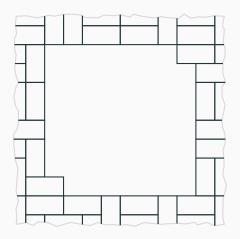


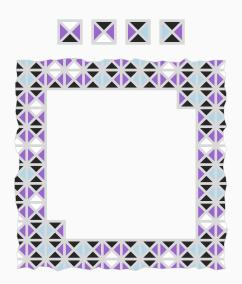
Premier exemple : le modèle des dimères

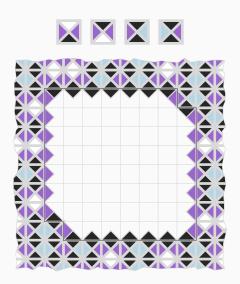


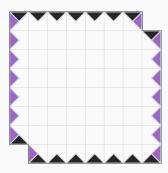
Premier exemple : le modèle des dimères

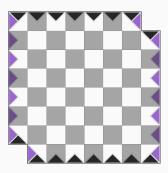


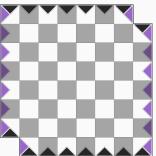












On cherche à généraliser ce type d'arguments de parité/comptage.

Présentation d'un groupe

On peut décrire un groupe Γ par une **présentation**, notée $\Gamma = \langle S \mid R \rangle$:

- S est l'alphabet des générateurs de Γ (et leurs inverses formels)
- Un élément $g \in \Gamma = \text{un mot sur } S$
- R est un ensemble de relations = des mots triviaux dans Γ

Présentation d'un groupe

On peut décrire un groupe Γ par une **présentation**, notée $\Gamma = \langle S \mid R \rangle$:

- S est l'alphabet des générateurs de Γ (et leurs inverses formels)
- Un élément $g \in \Gamma = \text{un mot sur } S$
- R est un ensemble de relations = des mots triviaux dans Γ

Exemple avec $\mathbb{Z}^2=\left\langle a,b\mid aba^{-1}b^{-1}\right\rangle$: $aba=aaba^{-1}b^{-1}ba=aab$

Présentation d'un groupe

On peut décrire un groupe Γ par une **présentation**, notée $\Gamma = \langle S \mid R \rangle$:

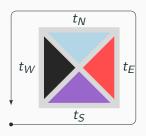
- S est l'alphabet des générateurs de Γ (et leurs inverses formels)
- Un élément $g \in \Gamma = \text{un mot sur } S$
- R est un ensemble de relations = des mots triviaux dans Γ

Exemple avec
$$\mathbb{Z}^2=\left\langle a,b\mid aba^{-1}b^{-1}\right\rangle$$
 : $aba=aaba^{-1}b^{-1}ba=aaba^{-1}b^{-1}$

Un groupe Γ est **finiment présenté** s'il admet une présentation $\Gamma = \langle S \mid R \rangle$ avec S, R finis.

Mots de contour, groupe de Conway

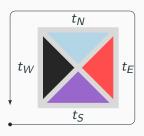
Pour un sous-shift défini avec un ensemble ${\mathcal A}$ de tuiles colorées par des couleurs de ${\mathcal C}$:



$$\Gamma(\mathcal{A}) = \left\langle C \mid t_W^{-1} t_N^{-1} t_E t_S, t = (t_W, t_S, t_E, t_N) \in \mathcal{T} \right\rangle$$

Mots de contour, groupe de Conway

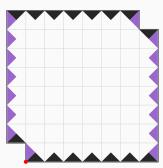
Pour un sous-shift défini avec un ensemble $\mathcal A$ de tuiles colorées par des couleurs de $\mathcal C$:



$$\Gamma(\mathcal{A}) = \left\langle C \mid t_W^{-1} t_N^{-1} t_E t_S, t = (t_W, t_S, t_E, t_N) \in T \right\rangle$$

Le contour d'un motif valide dans $x \in X$ valide \to identité de $\Gamma(A)$.

Contour et échiquier mutilé



Début du contour

$$g = t_{\blacksquare}^{-1} t_{\blacksquare}^{-1} t_{\blacksquare}^{-7} t_{\blacksquare}^{-7} t_{\blacksquare} t_{\blacksquare} t_{\blacksquare}^{7} t_{\blacksquare}^{7}$$

 $eq 1
ightarrow ext{Pas remplissable de façon valide.}$

Quelques limites du groupe de Conway

Idée qui généralise beaucoup d'arguments de type "comptage", mais :

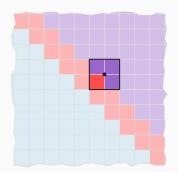
- Dépend fortement de l'alphabet du sous-shift
- Pas invariant par conjugaison
- S'adapte mal aux sous-shifts plus généraux que les SFT

Plutôt que de considérer seulement les côtés des tuiles, on considère des suites de *motifs*. Un *B*-chemin est la donnée :

- D'une trajectoire dans \mathbb{Z}^2
- Et d'un motif de support B associé à chacun

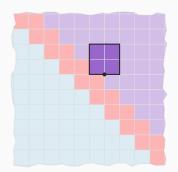
Plutôt que de considérer seulement les côtés des tuiles, on considère des suites de *motifs*. Un *B*-chemin est la donnée :

- D'une trajectoire dans \mathbb{Z}^2
- Et d'un motif de support B associé à chacun



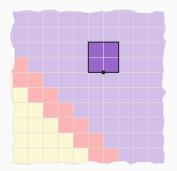
Plutôt que de considérer seulement les côtés des tuiles, on considère des suites de *motifs*. Un *B*-chemin est la donnée :

- D'une trajectoire dans \mathbb{Z}^2
- Et d'un motif de support B associé à chacun



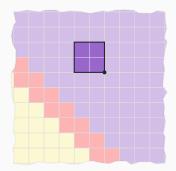
Plutôt que de considérer seulement les côtés des tuiles, on considère des suites de *motifs*. Un *B*-chemin est la donnée :

- D'une trajectoire dans \mathbb{Z}^2
- Et d'un motif de support B associé à chacun



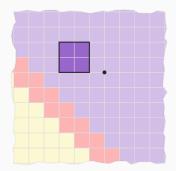
Plutôt que de considérer seulement les côtés des tuiles, on considère des suites de *motifs*. Un *B*-chemin est la donnée :

- D'une trajectoire dans \mathbb{Z}^2
- Et d'un motif de support B associé à chacun



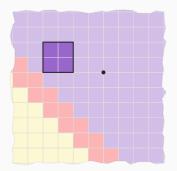
Plutôt que de considérer seulement les côtés des tuiles, on considère des suites de *motifs*. Un *B*-chemin est la donnée :

- D'une trajectoire dans \mathbb{Z}^2
- Et d'un motif de support B associé à chacun



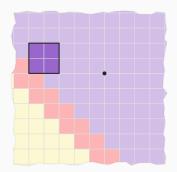
Plutôt que de considérer seulement les côtés des tuiles, on considère des suites de *motifs*. Un *B*-chemin est la donnée :

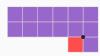
- D'une trajectoire dans \mathbb{Z}^2
- Et d'un motif de support B associé à chacun



Plutôt que de considérer seulement les côtés des tuiles, on considère des suites de *motifs*. Un *B*-chemin est la donnée :

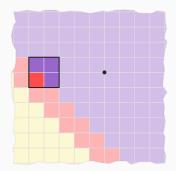
- D'une trajectoire dans \mathbb{Z}^2
- Et d'un motif de support B associé à chacun

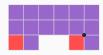




Plutôt que de considérer seulement les côtés des tuiles, on considère des suites de *motifs*. Un *B*-chemin est la donnée :

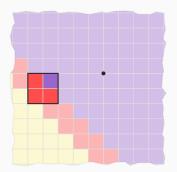
- D'une trajectoire dans \mathbb{Z}^2
- Et d'un motif de support B associé à chacun





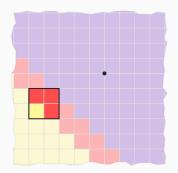
Plutôt que de considérer seulement les côtés des tuiles, on considère des suites de *motifs*. Un *B*-chemin est la donnée :

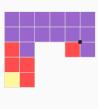
- D'une trajectoire dans \mathbb{Z}^2
- Et d'un motif de support B associé à chacun



Plutôt que de considérer seulement les côtés des tuiles, on considère des suites de *motifs*. Un *B*-chemin est la donnée :

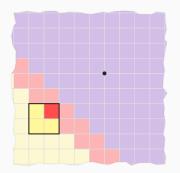
- D'une trajectoire dans \mathbb{Z}^2
- Et d'un motif de support B associé à chacun

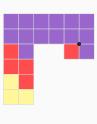




Plutôt que de considérer seulement les côtés des tuiles, on considère des suites de *motifs*. Un *B*-chemin est la donnée :

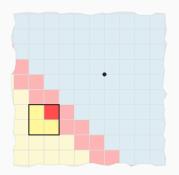
- D'une trajectoire dans \mathbb{Z}^2
- Et d'un motif de support B associé à chacun

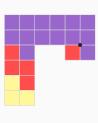




Plutôt que de considérer seulement les côtés des tuiles, on considère des suites de *motifs*. Un *B*-chemin est la donnée :

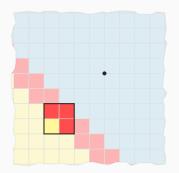
- D'une trajectoire dans \mathbb{Z}^2
- Et d'un motif de support B associé à chacun

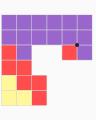




Plutôt que de considérer seulement les côtés des tuiles, on considère des suites de *motifs*. Un *B*-chemin est la donnée :

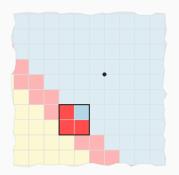
- D'une trajectoire dans \mathbb{Z}^2
- Et d'un motif de support B associé à chacun

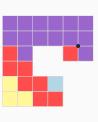




Plutôt que de considérer seulement les côtés des tuiles, on considère des suites de *motifs*. Un *B*-chemin est la donnée :

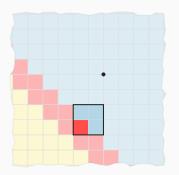
- D'une trajectoire dans \mathbb{Z}^2
- Et d'un motif de support B associé à chacun

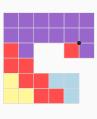




Plutôt que de considérer seulement les côtés des tuiles, on considère des suites de *motifs*. Un *B*-chemin est la donnée :

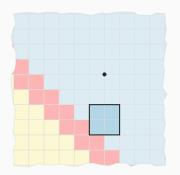
- D'une trajectoire dans \mathbb{Z}^2
- Et d'un motif de support B associé à chacun

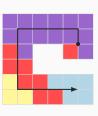


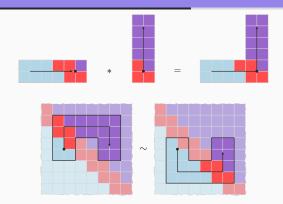


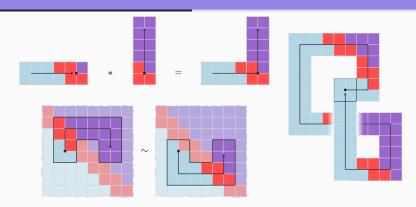
Plutôt que de considérer seulement les côtés des tuiles, on considère des suites de *motifs*. Un *B*-chemin est la donnée :

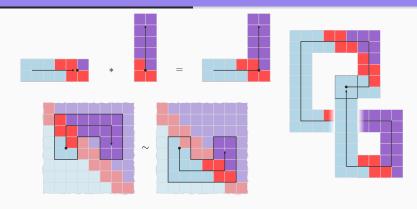
- D'une trajectoire dans \mathbb{Z}^2
- Et d'un motif de support B associé à chacun











Définition

Pour $B \subset_f \mathbb{Z}^2$, on définit $\pi_1^B(X)$ comme le groupe des boucles, à déformation près.

Groupe fondamental projectif

Difficulté: se passer de la dépendance en B. On peut obtenir un unique groupe, $\pi_1^{proj}(X)$, invariant par conjugaison (Geller, Propp 95 [GP95]).

Groupe fondamental projectif

Difficulté: se passer de la dépendance en B. On peut obtenir un unique groupe, $\pi_1^{proj}(X)$, invariant par conjugaison (Geller, Propp 95 [GP95]).

Question

Quels sont les groupes réalisables comme $\pi_1^{proj}(X)$ pour X un SFT de \mathbb{Z}^2 ?

Groupes finis?

Construction de [GP95]: si G fini, pour chaque égalité ab = cd dans le groupe, on a dans l'alphabet un symbole

Idée de la construction

Théorème

P., Vanier (MFCS 2023) [PV23]

Si $G=\langle S\mid R\rangle$ est un groupe finiment présenté, il existe un SFT X_G tel que $\pi_1^{proj}(X_G)\simeq G$.

• Pour $s \in S$, on ajoute ces symboles à l'alphabet de X_G :

Idée de la construction

Théorème

P., Vanier (MFCS 2023) [PV23]

Si $G=\langle S\mid R\rangle$ est un groupe finiment présenté, il existe un SFT X_G tel que $\pi_1^{proj}(X_G)\simeq G$.

• Pour $s \in S$, on ajoute ces symboles à l'alphabet de X_G :

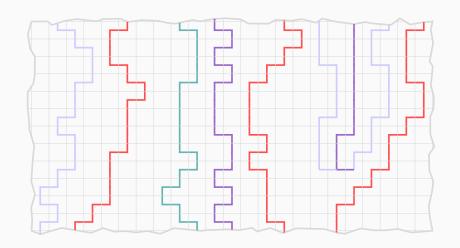
• Pour $r_1r_2 \dots r_n \in R$: on pose $\overline{R_i} = \overline{r_1r_2} \dots \overline{r_i}$ et on ajoute :

Début

Pour $2 \le i < n$

Fin

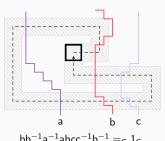
Configurations de X_G



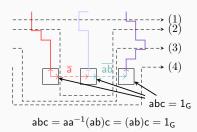
Boucles équivalentes

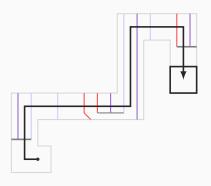
On associe un élément de G à chaque boucle.

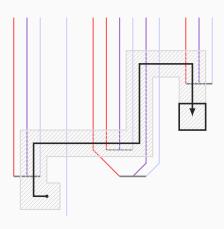
Boucles équivalentes \implies même élément de G

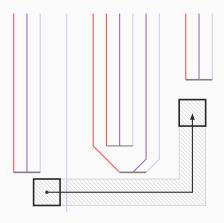


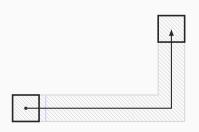
$$bb^{-1}a^{-1}abcc^{-1}b^{-1} =_{\mathsf{G}} 1_{\mathsf{G}}.$$

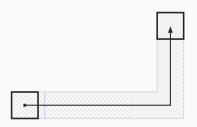












Une suite de telles opérations permet de montrer que toutes les boucles associées au même élément de G sont équivalentes.

Conclusion sur le groupe fondamental projectif

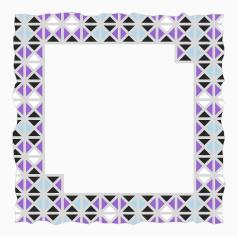
Outil intéressant : formalise beaucoup d'arguments/méthodes pour répondre aux questions de "pavages à trous", de façon robuste, . Mais :

- Difficile à calculer (cas particulier des Hom-shifts)
- Peut être n'importe groupe finiment présenté (même pour un SFT): tout reste incalculable
- Beaucoup de questions restent ouvertes (Groupe bien défini ?
 Caractérisation complète ? Équivalence élément neutre
 trou "remplissable" ?)

Entropie d'extension

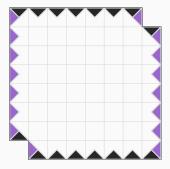
Seconde approche : étendre des motifs

Retour sur les dimères :



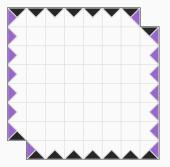
Seconde approche : étendre des motifs

Retour sur les dimères :



Seconde approche : étendre des motifs

Retour sur les dimères :



Renverse l'observation : tous les motifs de même bord sont équivalents vis-à-vis de leur extensibilité.

Généralisation : extensions de motifs

Objectif: caractériser les motifs équivalents pour la relation d'extensibilité:

 $w \sim w' \iff$ on peut échanger w et w' dans tout motif valide (en particulier : w, w' de même support).

Généralisation : extensions de motifs

Objectif: caractériser les motifs équivalents pour la relation d'extensibilité:

 $w \sim w' \iff$ on peut échanger w et w' dans tout motif valide (en particulier : w, w' de même support).

On note $E_X(n)$ le nombre de classes de motifs équivalents de taille n = motifs librement échangeables dans X.

23/32

Cas des SFT et croissance de $E_X(n)$

Jusqu'à \mathcal{A}^{n^d} motifs sur $\{0,\ldots,n-1\}^d$. Dans un SFT, l'extension ne dépend que du bord du motif $\implies E_X(n) = o(|\mathcal{A}|^{n^d})$ classes.

Cas des SFT et croissance de $E_X(n)$

Jusqu'à \mathcal{A}^{n^d} motifs sur $\{0,\ldots,n-1\}^d$. Dans un SFT, l'extension ne dépend que du bord du motif $\implies E_X(n) = o(|\mathcal{A}|^{n^d})$ classes.

Théorème

Ormes, Pavlov [OP16]

Pour $X \subset \mathcal{A}^{\mathbb{Z}^d}$ un sous-shift quelconque, s'il existe n > 0 tel que $E_X(n) \leq n$ alors X est sofique. Sur \mathbb{Z} , c'est une équivalence.

24/32

Cas des SFT et croissance de $E_X(n)$

Jusqu'à \mathcal{A}^{n^d} motifs sur $\{0,\ldots,n-1\}^d$. Dans un SFT, l'extension ne dépend que du bord du motif $\implies E_X(n) = o(|\mathcal{A}|^{n^d})$ classes.

Théorème

Ormes, Pavlov [OP16]

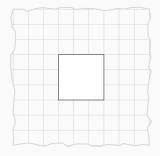
Pour $X \subset \mathcal{A}^{\mathbb{Z}^d}$ un sous-shift quelconque, s'il existe n > 0 tel que $E_X(n) \leq n$ alors X est sofique. Sur \mathbb{Z} , c'est une équivalence.

Question

Quels sont les comportements asymptotiques possibles de E_X pour différents sous-shifts X ?

Un exemple sofique

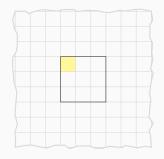
Exemple : $X = \text{configurations sur } \{ \square, \square \}$ avec ≤ 1 cases jaunes.



Première classe :

Un exemple sofique

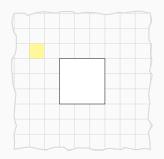
Exemple : $X = \text{configurations sur } \{\square, \square\} \text{ avec } \le 1 \text{ cases jaunes.}$



Première classe :

Un exemple sofique

Exemple : $X = \text{configurations sur } \{\square, \square\} \text{ avec } \leq 1 \text{ cases jaunes.}$



Première classe :

Seconde classe :

 $E_X(n) = 2$ pour tout n : X est sofique.

Entropie d'extension : un autre invariant

La suite $(E_X(n))_{n\in\mathbb{N}}$ est une mesure trop fine, mais on peut définir un invariant à partir de sa croissance :

Définition : Entropie d'extension French, Pavlov [FP19]

L'entropie d'extension d'un sous-shift X de \mathbb{Z}^d est

$$h_E(X) = \lim_{n \to +\infty} \frac{\log E_X(n)}{n^d} = \inf_{n \to +\infty} \frac{\log E_X(n)}{n^d}$$

Entropie d'extension : un autre invariant

La suite $(E_X(n))_{n\in\mathbb{N}}$ est une mesure trop fine, mais on peut définir un invariant à partir de sa croissance :

Définition : Entropie d'extension French, Pavlov [FP19]

L'entropie d'extension d'un sous-shift X de \mathbb{Z}^d est

$$h_E(X) = \lim_{n \to +\infty} \frac{\log E_X(n)}{n^d} = \inf_{n \to +\infty} \frac{\log E_X(n)}{n^d}$$

Invariant de conjugaison (d = 1 [FP19], d > 2dans callard paviet vanier24 comput exten sets multid subsh $0 < h_F(X) < \log A$, et vaut 0 si X est un SFT :

$$E_X(n) \sim |\mathcal{A}|^{h_E(x)n^d}$$

Comment quantifier la complexité d'un nombre réel ?

27/32

Comment quantifier la complexité d'un nombre réel ?

Idée : $\alpha \in \mathbb{R}$ est calculable si l'on sait l'approximer, $|\alpha - r_n| < 2^{-n}$ avec (r_n) calculable.

Sans l'hypothèse de calculabilité de (r_n) , on obtient des réels non calculables :

$$\Pi_n = \inf_{k_1} \sup_{k_2} \inf_{k_3} \dots r_{k_1,\dots,k_n} \subset \mathbb{R}$$

Comment quantifier la complexité d'un nombre réel ?

Idée : $\alpha \in \mathbb{R}$ est calculable si l'on sait l'approximer, $|\alpha - r_n| < 2^{-n}$ avec (r_n) calculable.

Sans l'hypothèse de calculabilité de (r_n) , on obtient des réels non calculables :

$$\Pi_n = \inf_{k_1} \sup_{k_2} \inf_{k_3} \dots r_{k_1,\dots,k_n} \subset \mathbb{R}$$

Comment quantifier la complexité d'un nombre réel ?

Idée : $\alpha \in \mathbb{R}$ est calculable si l'on sait l'approximer, $|\alpha - r_n| < 2^{-n}$ avec (r_n) calculable.

Sans l'hypothèse de calculabilité de (r_n) , on obtient des réels non calculables :

$$\Pi_n = \inf_{k_1} \sup_{k_2} \inf_{k_3} \dots r_{k_1,\dots,k_n} \subset \mathbb{R}$$

Comment quantifier la complexité d'un nombre réel ?

Idée : $\alpha \in \mathbb{R}$ est calculable si l'on sait l'approximer, $|\alpha - r_n| < 2^{-n}$ avec (r_n) calculable.

Sans l'hypothèse de calculabilité de (r_n) , on obtient des réels non calculables :

$$\Pi_n = \inf_{k_1} \sup_{k_2} \inf_{k_3} \dots r_{k_1,\dots,k_n} \subset \mathbb{R}$$

Comment quantifier la complexité d'un nombre réel ?

Idée : $\alpha \in \mathbb{R}$ est calculable si l'on sait l'approximer, $|\alpha - r_n| < 2^{-n}$ avec (r_n) calculable.

Sans l'hypothèse de calculabilité de (r_n) , on obtient des réels non calculables :

$$\Pi_n = \inf_{k_1} \sup_{k_2} \inf_{k_3} \dots r_{k_1,\dots,k_n} \subset \mathbb{R}$$

Tout est incalculable

5) callard _paviet _vanier24 _comput _exten _sets _multid _subsh

Les entropies d'extension des sous-shifts effectifs de \mathbb{Z} sont exactement les réels Π_3 positifs.

5) callard _paviet _vanier24 _comput _exten _sets _multid _subsh

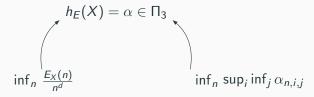
Les entropies d'extension des sous-shifts sofiques de \mathbb{Z}^d pour $d \geq 2$ sont exactement les réels Π_3 positifs.

Sens facile : $h_E(X) \in \Pi_3$

$$h_E(X) = \alpha \in \Pi_3$$

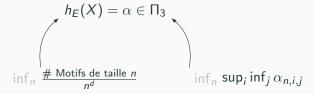
$$h_E(X) = \alpha \in \Pi_3$$

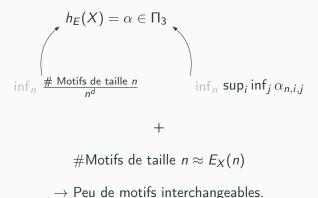
$$\inf_n \frac{E_X(n)}{n^d}$$



$$h_E(X) = \alpha \in \Pi_3$$

$$\inf_n \frac{E_X(n)}{n^d} \qquad \inf_n \sup_i \inf_j \alpha_{n,i,j}$$





Construction en bref (effectif sur Z)

Construction en bref (effectif sur Z)

Construction en bref (effectif sur Z)

Construction en bref (effectif sur Z)

• Périodicité: obtient #Motifs de taille $n \approx E_X(n)$

Complètement déterminé

• Nombre de motifs $\approx 2^{\alpha_n}$:

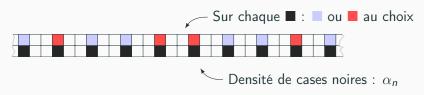
• Périodicité: obtient #Motifs de taille $n \approx E_X(n)$

• Nombre de motifs $\approx 2^{\alpha_n}$:

Densité de cases noires : $\alpha_{\it n}$

• Périodicité: obtient #Motifs de taille $n \approx E_X(n)$

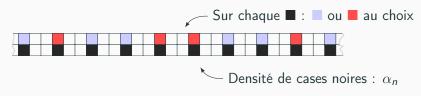
• Nombre de motifs $\approx 2^{\alpha_n}$:



Proportion α_n des cases comptent pour l'extension du motif.

• Périodicité: obtient #Motifs de taille $n \approx E_X(n)$

• Nombre de motifs $\approx 2^{\alpha_n}$:



Proportion α_n des cases comptent pour l'extension du motif. Beaucoup de détails cachés (α_n pas calculable, adaptation aux sofiques multidimensionnels ...)

Résumé sur les entropies d'extension

Exemple supplémentaire d'invariant :

- Complètement caractérisé par la calculabilité
- Pour lequel les sous-shift sofiques sont "aussi complexes" que les effectifs
- Très différent en d = 1 et $d \ge 2$ pour les sous-shifts sofiques

Résumé sur les entropies d'extension

Exemple supplémentaire d'invariant :

- Complètement caractérisé par la calculabilité
- Pour lequel les sous-shift sofiques sont "aussi complexes" que les effectifs
- Très différent en d=1 et $d\geq 2$ pour les sous-shifts sofiques Résumé des caractérisations :

	\mathbb{Z}	$\mathbb{Z}^{a\geq 2}$
SFT	{0}	
Sofique	{0}	П ₃
Effectif	П ₃	
Calculable	Π_2	
Effectif et minimal	Π_1	
Effectif and 1-Mélangeant/Block-Gluing(*)	П ₃	

Conclusion

Mise en évidence de la forte expressivité des sous-shifts de \mathbb{Z}^2 en tant que modèle de calcul :

- Nombreux problèmes indécidables
- Caractérisation complète de certains invariants à l'aide de la calculabilité, ou obtention de "bornes inférieures" pour d'autres (que dire sur les bornes supérieures?)
- D'autres résultats, notamment sur des sous-shifts de graphes et des substitutions.

32/32

Conclusion

Mise en évidence de la forte expressivité des sous-shifts de \mathbb{Z}^2 en tant que modèle de calcul :

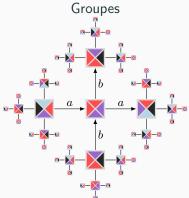
- Nombreux problèmes indécidables
- Caractérisation complète de certains invariants à l'aide de la calculabilité, ou obtention de "bornes inférieures" pour d'autres (que dire sur les bornes supérieures?)
- D'autres résultats, notamment sur des sous-shifts de graphes et des substitutions.

Suite possible : étude plus systématique du groupe plein, invariant algèbrique avec des forts liens avec la calculabilité.

Au-delà des pavages sur \mathbb{Z}^d

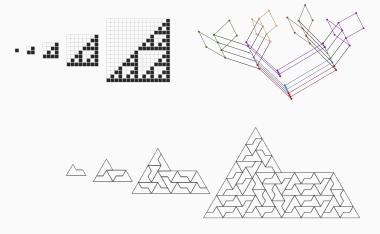
Dans quelle mesure peut-on adapter les résultats des sous-shifts de \mathbb{Z}^2 aux sous-shifts définis sur d'autres espaces ?

Première question : quel *cadre* pour définir ces sous-shifts ?



Pavages substitutifs

Le résultat que l'on cherche à généraliser porte sur les sous-shifts substitutifs.



Méta-théorème de Mozes

Meta-Théorème : Mozes

Tout sous-shift substitutif raisonnable est sofique.

Méta-théorème de Mozes

Meta-Théorème : Mozes

Tout sous-shift substitutif raisonnable est sofique.

Méta-théorème de Mozes

Meta-Théorème : Mozes

Tout sous-shift substitutif raisonnable est sofique.

Vérifié avec des preuves et des hypothèses similaires dans :

- \mathbb{Z}^d [Moz89], [BS16]
- \mathbb{R}^d [Goo98], [FO10]
- Groupes de Baumslag-Solitar BS(1, N) [Sil20]

Question

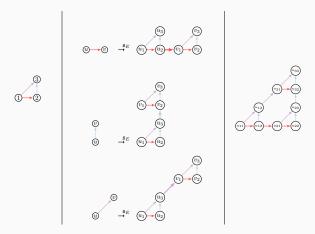
Hypothèses minimales sur l'espace sous-jacent pour que la méta-preuve fonctionne ?

Sous-shift substitutifs sur les graphes

On utilise un formalisme de L-systèmes généralisés (Knapik [Kna24]) : on substitue un sommet en graphe, les arêtes en ensemble d'arêtes entre ces graphes.

Sous-shift substitutifs sur les graphes

On utilise un formalisme de L-systèmes généralisés (Knapik [Kna24]) : on substitue un sommet en graphe, les arêtes en ensemble d'arêtes entre ces graphes.



Graphes substitutifs presque sofiques

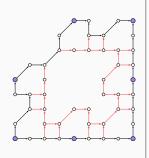
Théorème

Pour $\mathfrak s$ une graphe-substitution quasi-connexe et $X_{\mathfrak s}$ associé, il existe $Y_{\mathfrak s}\supseteq X_{\mathfrak s}$ un sous-shift sofique $X_{\mathfrak s}$ -feuilleté.

Graphes substitutifs presque sofiques

Théorème

Pour $\mathfrak s$ une graphe-substitution quasi-connexe et $X_{\mathfrak s}$ associé, il existe $Y_{\mathfrak s} \supseteq X_{\mathfrak s}$ un sous-shift sofique $X_{\mathfrak s}$ -feuilleté.



Graphes substitutifs presque sofiques

Théorème

Pour $\mathfrak s$ une graphe-substitution quasi-connexe et $X_{\mathfrak s}$ associé, il existe $Y_{\mathfrak s} \supseteq X_{\mathfrak s}$ un sous-shift sofique $X_{\mathfrak s}$ -feuilleté.

